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Introduction 
 

Obvious progress achieved recently in development of new laser technologies stimulates their active use 

in optics of natural media. Unique properties of laser radiation allow new information on the objects under study 

to be obtained. A prominent example is the application of femtosecond lasers to atmospheric sensing, clearly 

demonstrating the increase in accuracy, sensitivity, and range of sensing. The use of broadband femtosecond 

radiation, as well as initiated by the radiation white supercontinuum due to filamentation, significantly extend 

the list of measured parameters of the environment and allow sensing of ecologically dangerous gaseous and 

aerosol substances. 

For efficient application of high-power lasers in the environmental research, it is important to know how 

the high-power laser radiation propagates in the atmosphere and how one can improve properties of the 

radiation as a research instrument. This knowledge is also important for many other practical applications. 

The use of high-power lasers in environmental research is a complex problem including both basic and 

applied aspects. To be noted among them are nonlinear optics of the atmosphere, problems of linear and 

nonlinear propagation of optical radiation in the atmosphere, adaptive optics, and laser technologies of 

diagnostics of natural media. 
Filamentation is manifested in the localization of a significant fraction of the initial laser pulse energy 

within a narrow axial region [1-3]. Typically, the filaments are produced by Ti:Sapphire laser amplification systems 

with the central wavelength of 770-810 nm, pulse duration 50 – 200 fs and peak power up to 1-2 TW. The length of 

the localized structure is up to several hundred meters or even kilometers [4] with the transverse diameter of the 

order of ~100 µm. The maximum intensity in the filament is saturated at the value ~ 5 1013 W/cm2 corresponding 

to the threshold intensity for the ionization of air. Such confined propagation is accompanied by the generation of 

a wide frequency spectrum – supercontinuum. The supercontinuum band generated by terawatt 35 fs 800 nm pulses 

in air extends from 0.35 to 4.5 µm [5]. This makes possible to use filamentation phenomenon for remote sensing 

applications. Indeed, remote sensing of the atmosphere requires a broadband light source, the radiation of which 

can be delivered to the object of investigation, such as, e.g., an aerosol layer located at a certain distance from 

the ground surface. Extended localization of a high-power femtosecond laser pulse in air opens a new and 

unique way to construct such a broadband source because the forwardly directed supercontinuum, 

accompanying filamentation, can reach the altitudes as high as 10 km [4]. The backscattered light brings the 

information about the atmospheric constituents. Thus, the combination of a broadband light produced by a 

femtosecond pulse and the appropriate time and frequency-resolved registration system of the backscattered 

light provides us with a femtosecond lidar [4, 6]. 

The key parameter for femtosecond remote sensing is the amount of the initial pulse energy converted into 

a white light energy. In order to optimize this conversion efficiency, the physical origin of the supercontinuum in the 

course of the filamentation should be found out. The generated supercontinuum should be delivered to the specified 

location of interest. This location can be controlled by adjustment of the initial pulse parameters, such as chirp and 

initial wavefront curvature. 

For the remote sensing applications it is important that the filament is stable from one laser shot to another. 
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However, in practice, there could be several reasons leading to the displacement of the filament starting position in 

both longitudinal and transverse directions. Among the reasons for these random shot-to-shot displacements there 

could be initial intensity and phase perturbations in the beam profile introduced by high-power laser amplification 

system, random angular deflections, refractive index fluctuations caused by atmospheric turbulence. 

Random perturbations of the phase due to the refractive index fluctuations in turbulence are transformed 

into the intensity fluctuations. The latter develop into the hot spots and seed the formation of filaments. For a 

terawatt pulse its peak power is hundred times larger than the critical power for self-focusing in air. Therefore, 

random multiple filaments are formed in atmospheric turbulence. Statistical characteristics of atmospheric 

turbulence define the scenario of the formation and properties of a bunch of multiple filaments. Thus, the process of 

filament formation in terawatt femtosecond laser pulse in the atmosphere is, by definition, stochastic. Each of the 

multiple filaments is a source of plasma and white light. Therefore, stochastic nature of multiple filamentation might 

be the reason for the instability of the nonlinear fluorescence [7] as well as supercontinuum signal [4] in 

atmospheric lidar systems. Studying of multifilamentation in the turbulent atmosphere is of crucial importance for 

improving the methods of the remote sensing [4,6] and lightning discharge control [8]. 

In spite of almost century-long history, the problem of elastic linear scattering of optical radiation by 

dielectric spherical microparticles remains urgent by now. It is known that the basic principles of this theory 

formulated still in papers by Debye [9] and Mie [10] and then developed in Refs. 11 – 14 are concerned with 

diffraction of a plane monochromatic light wave at a particle under stationary conditions. 

As applied to the process of elastic light scattering by a particle, the condition of stationarity means that 

the time of establishment of optical fields in a particle and beyond it is much shorter than the duration of the 

diffracting radiation pulse and, consequently, the establishment of optical fields can be considered as 

instantaneous. At the same time, light scattering, as any other physical process, always has nonstationary phases 

in its development. This circumstance is especially important in connection with promises of applying ultrashort 

laser pulses in aerosol optics [6]. In such time scales, the nonstationarity of the scattering process becomes 

comparable with the duration of a radiation pulse. 

The studies of the temporal and spectral structures of the field of elastic scattering by weakly absorbing 

spherical particles [15] revealed the existence of free electromagnetic oscillations in dielectric spheres, whose 

frequencies are determined by the particle size and optical properties. If the frequency of the incident radiation 

coincides with the frequency of some particle eigenmode, an internal optical field is resonantly excited, and the 

spatiotemporal distribution of this field is completely determined by the field of the excited mode. Characteristic 

lifetimes τR of the highest-Q resonances (whispering gallery modes) in micron-sized particles usually lie in the 

nanosecond region [16]. Thus, if the length of the initial radiation pulse is comparable with and shorter than the 

time τR, then its scattering by a particle may have the nonstationary character. 

Theoretical investigations of nonstationary light scattering are based on solutions of Maxwell’s 

equations in their complete form with allowance for the temporal variability of the fields. A well-known 

approach to solution of this problem is the method of the spectral Fourier analysis [17-20]. It allows the problem 

on nonstationary scattering of a pulse with a spectral distribution to be reduced to scattering of a set of 

monochromatic Fourier harmonics. In this case, particle scattering properties are characterized by the so-called 
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spectral response function, which is a traditional Mie series written for all frequencies of the initial pulse 

spectrum. The scattered and internal fields are written in the form of the convolution integral of the pulse 

spectrum and the spectral response function of the particle [20]. The analytical solution of this light scattering 

problem was obtained only for some particular cases (optically small particles [18]), when the spectral response 

function has a quite simple form. Some numerical solutions of this problem that describe the behavior of the 

internal [18,20] and external [19] fields of the scattered wave were obtained as well. 

Among various numerical methods, to be noted is the finite-difference time domain method, which is, in 

fact, the direct numerical solution of the nonstationary Maxwell equations [21,22]. It is worth using this method 

in calculations of light diffraction at objects having a complex geometry, as well as inhomogeneities in their 

optical properties. 

In the recent years, the use of significantly nonstationary sources, such as picosecond and femtosecond 

lasers, for excitation of molecular fluorescence attracts considerable attention. The application of such sources 

in the atmosphere allows the power characteristics of the radiation and the received signal to be increased 

significantly without optical breakdown of the medium, which, as known, considerably restricts the range of 

laser radiation propagation in the nanosecond time region [16]. 

The phenomenon of spontaneous emission of atoms and molecules in a high-Q resonator was 

traditionally studied by classical and quantum electrodynamics. In these studies, the emphasis was on the 

problems connected with quantum characteristics of spontaneous emission of molecules into resonator modes. 

Macroscopic optics of emitting dipoles was studied in the papers [23-25], where the equations were derived for 

the power and the angle pattern of Raman scattering and spontaneous fluorescence of active molecules in 

spherical microparticles steadily exposed to laser radiation. In the theoretical model used, the active fluorophore 

molecules were represented by a set of classical dipoles arbitrarily distributed inside the particle and excited by 

the electric field of the incident wave. The efficiency of excitation of every dipole was characterized by the 

effective polarizability of the medium at the point of its location inside the particle and was proportional to the 

amplitude of the principal wave. The total field of spontaneous emission was a sum of the collective field of 

dipole emission and some effective field caused by the particle boundary. Based on this approach, the sought 

parameters were calculated numerically and the analytical equations were obtained in the approximation of 

optically small particles. 

The excitation of active molecules in a spherical resonator is characterized by the high spatial 

inhomogeneity of the optical pump field, manifesting itself in the volume-inhomogeneous profile of the field of 

spontaneous radiation. At the high power density of the radiation incident onto a particle, the probability of 

realization of not only one-photon transitions, but also many-photon absorption in molecules increases 

appreciably. Under these conditions, the function of the source inducing the spontaneous emission becomes 

even more inhomogeneous [26]. The one-, two-, and three-photon excited fluorescence in ethanol droplet with 

coumarin additions exposed to femtosecond radiation was observed experimentally in [25]. The effect of 

intensification of the fluorescent emission in the backward direction, opposing to the direction of the incident 

pump radiation, was discovered. In [25] the results were interpreted within the framework of the stationary 

model of the process, in which the power (integral over angles) of spontaneous fluorescence from droplets sP  
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can be expressed as ( )k k
s s LI∝ σP , where ( )k

sσ  is the cross section of the k-photon absorption (k = 1,2,3…); LI  is 

the intensity of the pump radiation in the particle. In this connection, it is important to reveal the character of 

this dependence at the nonstationary excitation of molecular fluorescence in the particle. For interpretation of 

physical and numerical experiments, it is also important to derive the analytical equations, which would allow 

estimation of the cross section or power of spontaneous fluorescence in microparticles exposed to short and long 

laser pulses. 
The study of the interaction between the high-power laser radiation and aerosol is of great importance 

for in-depth understanding of the laser radiation propagation through the atmosphere and for remote sensing of 

the chemical composition of atmospheric aerosol. The transition from the nanosecond range of laser pulse 

duration to the femtosecond one qualitatively changes the type of nonlinear optical interactions. Thermal and 

ponderomotive processes are replaced by multiphoton ones. The role of nonstationary processes in light 

emission by microparticles increases. 

In nonlinear optics of aerosols in quasi-stationary light fields, the following processes of stimulated 

scattering were studied: stimulated Raman scattering (SRS), stimulated Brillouin scattering (SBS), and 

stimulated fluorescence (SF) [27,16]. Experimental [28-30] and theoretical [29] results on the third harmonic 

generation (THG) in microparticles were also obtained. 

New results have been obtained recently in femtosecond nonlinear optics of extended media. They are 

of great interest for nonlinear optics of aerosols. For femtosecond pulses with the duration tp shorter than the 

period of molecular vibrations in a matter TR, SRS manifestation has some peculiarities as compared to that 

under the quasi-stationary conditions. As such a pulse propagates along the Raman-active medium, every its 

Fourier component is converted nonlinearly. This gives rise to conversion of the entire spectrum of the pulse – it 

shifts to the red region [31,33]. 

The effect of pulse “clearing” of high-frequency components and conversion into an IR femtosecond 

pulse has been predicted in Ref. 34. 

Another interesting fact has been discovered experimentally in Ref. 32. Stimulated molecular vibrations 

arose as a Raman-active medium was exposed to a group of femtosecond pulses with the repetition period equal 

to the period of molecular vibrations. The properties of stimulated molecular vibrations were studied from 

scattering of a probe light wave. 

Obviously, the conditions of appearance of such effects in microparticles are different. This is 

connected with significantly different character of the spatiotemporal behavior of optical fields in a particle–

microcavity as compared to the traveling waves. 
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1. The theoretical study of powerful femtosecond laser pulse filamentation in 
the turbulent atmosphere 
 
Theoretical model for the nonlinear – optical pulse transformation in air 

From the point of view of the nonlinear optics, the filamentation is caused by the nonstationary self-action 

of a femtosecond laser pulse, the peak power of which exceeds the critical power for self-focusing in air [3,9,10]. 

Both spatial and temporal contraction of the pulse takes place due to the Kerr nonlinearity of neutral atoms and 

molecules in air. As soon as the peak intensity of the radiation reaches the photoionization threshold, the free 

electrons are accumulated in the medium. The laser-produced plasma leads to the defocusing of the trailing part of 

the pulse. The front of the pulse “sees” the neutral medium and continues to self-focus at different positions along 

the propagation direction as predicted by the moving focus model [11]. Material dispersion in air and self-

steepening of the pulse strongly contribute to the spatio-temporal dynamics of the filamentation. 

Theoretical model describing the effect of diffraction, material dispersion, Kerr nonlinearity, ionization and 

self-steepening of the laser pulse propagating in air is based on the scalar approximation of the wave equation for 

the light field ( ){ }kztitzyxEtzyxq −= ωexp),,,(),,,( . From the wave equation one can obtain the nonlinear 

equation for the complex amplitude ),,,( tzyxE , which in the retarded coordinate system ( / gt z vτ = − ) takes the 

form: 
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The first term on the right-hand side of the Eq.(1) describes the beam diffraction, the second and the 

third terms describe material dispersion, where ωk ′′  and ωk ′′′  are the second and the third-order dispersion 

coefficients in air. Note that in the conditions of strong self-focusing and self-steepening, material dispersion 

should be considered up to the third order or higher, because the higher-order dispersion terms influence the 

formation of subpulses [12]. The fourth term on the right-hand side of the Eq.(1) describes the contribution of 

the Kerr nonlinearity and the plasma to the pulse transformation. In the fifth term random fluctuations of the 

refractive index in atmospheric turbulence are taken into account. The sixth term describes the pulse energy loss 

due to the ionization. The absorption coefficient α is given by ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

= −

t
tzrNmI e ),,(

0
1 ωα , where m is the 

order of the multiphoton process, π8/2
0 EcnI =  is the light field intensity. 

Equation (1) for the complex amplitude of the electric field E, unlike the wave equation in the slowly 

varying envelope approximation (SVEA) [13], contains the operator ]1[
0 τω ∂

∂
±

i
. This approximation of the 

wave equation is called the slowly evolving wave approximation (SEWA) [14]. It was shown in [14] that in the 
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frameworks of the SEWA the equation for the complex amplitude of the electric field E accurately describes 

light pulse propagation down to the single cycle regime. In terms of mechanisms that contribute to the 

modification of ultrashort radiation, the SEWA describes self-steepening of the pulses and subpulses arising in 

the course of propagation as well as the shock wave formation at the back of the pulse.  

The nonlinear contribution to the refractive index from the neutral molecules is considered in the form: 

( ) tdttH
t

trEngEngtnk ′′−∫
−∞

+−= )()',(
2
1

2
1)1( 2

2
2

2∆ ,   (1.2) 

where the first term on the right-hand side of the Eq.(2) describes the instantaneous electronic response and the 

second term the delayed response associated with the stimulated Raman scattering on rotational transitions of 

molecules. In the case of oxygen and nitrogen molecules the coefficient g=0.5. The response function H(t) was 

approximated based on the damped oscillator model by the following equation [10]: 

H(t) = θ(t) Ω2 exp(-Γt/2)sin(Λt)/ Λ ,     (1.3) 

where θ(t) is the Heaviside function, and Λ = Ω2 – Γ2/4. The characteristic times are τ1 = 2 / Γ = 77 fs and τ2= 

1 / Λ = 62.5 fs. These values are comparable with the laser pulse duration used in the experiments on the 

observation of filamentation and supercontinuum generation [1-9]. 

The nonlinear contribution to the refractive index ),,,( tzyxnp∆  from the laser-produced plasma is 

given by:  

2
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where eep mtzyxNetzyx /),,,(4),,,( 2πω =  is the plasma frequency, me and e are the electron mass and 

charge, respectively. The free electron density ),,,( tzyxNe  depends on the spatial coordinates and time 

according to the kinetic equation: 

))(( 0
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e
e NNER

t
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−=
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∂
     (1.5) 

where ( )2ER  is the ionization rate, 0N  is the density of neutral oxygen or nitrogen molecules.  

In the atmospheric air the large amount of free electrons comes from the oxygen molecules, the 

ionization potential of which 2OW =12.1 eV is smaller than the ionization potential of the nitrogen molecules 

2NW =15.6 eV. To calculate the ionization rate ( )2ER  in the Eq.(5) we used the model [15] for the ionization 

of a hydrogen-like atom in the linearly polarized electric field E . This model includes the effective main 

quantum number 
iE

Zn
2

* = , where Z is the effective ion charge, which allows one to introduce the fitting 

parameter and to effectively take into account the difference between the ionization rates for a hydrogen-like 

atom and the real molecule. The value of effective charges for the ionization of O2 and N2 are calculated in [16] 
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by fitting the Eq.(5) to the experimental data on molecular ion yields. They are equal 0.53 and 0.9 for oxygen 

and nitrogen molecules, respectively.  

Statistical characteristics of a three-dimensional field of refractive index fluctuations n~ (x,y,z) are given 

by the model of atmospheric turbulence. For femtosecond and subpicosecond laser pulses the field n~ (x,y,z) 

may be regarded as stationary. Statistical isotropy of the filament center wandering in the experiments [3, 17] 

allows us to assume that the pulse was propagated in the conditions of “the developed turbulence” obeying the 

Kolmogorov 11/3 law [18]. Therefore, in order to describe refractive index fluctuations in the simulations, we 

used the modified von Karman model of atmospheric turbulence. According to this model, the spectrum of 

refractive index fluctuations is given by: 

( ) ( ) ( )226/112
0

2 /exp033,0,, mnzyxn CF κκ−κ+κ=κκκ
−

,   (1.6) 

where κx, κy, κy are spatial wavenumbers. This spectrum covers both inertial and dissipative subranges of 

atmospheric fluctuations. Here 2
nС  is the structure constant, which characterizes the strength of turbulence; 

parameters 00 /2 Lπ=κ  and 0/92.5 lm =κ  are the boundaries of the spatial spectrum corresponding to the 

inertial subrange, L0 and l0 being outer and inner scales of turbulence, respectively. To generate the atmospheric 

phase screens with the modified von Karman spectrum of fluctuations we employ the modified method of 

subharmonics. [19-21]. This method increases essentially the range of spatial scales of random phase 

fluctuations reproduced on the grid. As demonstrated in [22], the modified method of subharmonics with four 

iterations of phase screen generation makes it possible to obtain random field of phase fluctuations (6), the outer 

scale L0 of which is two orders of magnitude larger than the transverse size of the grid in the plane XOY.  

To model the propagation through the turbulent atmosphere in the simulations, we represent the medium 

by a chain of phase screens located along the axis z. This chain is made up of a finite number of scattering 

screens and reproduces adequately the properties of continuous medium, provided the distance between the 

screens ∆z is small compared with the characteristic scales of the field variation along the propagation 

coordinate z. These scales include the length of nonlinearity Lnl, the diffraction length Ld and the length of 

turbulence Lturb : 

    }.,,min{ turbdnl LLLz <<∆      (1.7) 

The length of nonlinearity is defined as a distance along which the maximum phase growth due to self-focusing 

}max{ 2
2 EkLn nlnl =ϕ  does not exceed 1 radian. Then 

    .})max{( 12
2

−= EknLnl       (1.8) 

The length of turbulence Lturb is defined as a distance along which the mean-square deviation of the phase due to 

refractive index fluctuations does not exceed 1 radian. For the von Karman model of atmospheric turbulence the 

length of turbulence is given by: 

    ,])2(033,04.2[ 13/5

0

222 −−=
L

CkL nturb
ππ     (1.9) 
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The diffraction length Ld is given by the expression Ld=ka(z)2. The value a(z) coincides with the initial beam 

radius a0 at z=0. Through the value a(z) for z>0 we denote the spatial scale of the nonlinear focal region in the 

beam cross section. 

In the course of Kerr self-focusing the intensity increases sharply in the region where a nonlinear focus 

is formed. Simultaneously, the lengths Lnl and Ld decrease. In order to satisfy the inequality (7) we decreased the 

interval between the phase screens as the plane of the nonlinear focus formation was approached. Since the 

simulation of phase screens that adequately reproduce atmospheric turbulence requires a lot of calculations we 

used two systems of phase screens. The first system imitates random phase fluctuations S~ turb (x,y,z) caused by 

refractive index perturbations in the atmosphere. In this system of phase screens the “turbulent” phase screens 

are placed equidistantly along the propagation direction with the interval ∆ zturb . The interval ∆ zturb is selected 

from both the inequality (7) and the condition governing the applicability of the δ  - correlated phase screens for 

the turbulent atmosphere given by 

   L0 ≤ ∆ zturb << min {Lturb, Ld }.     (1.10) 

Here L0 is the outer scale of atmospheric turbulence defined earlier.  

The second system of phase screens reproduces the nonlinear phase growth ϕ nl(x,y,z) arising due to 

self-focusing. The distance ∆ znl between “nonlinear” phase screens decreases with increasing intensity in 

accordance with the conditions (7,8). In the initial stage of propagation, where the nonlinear phase growth is 

small and ∆ znl > ∆ zturb, “nonlinear” phase screens are located in the same plane with the “turbulent” phase 

screens. Between both “nonlinear” and “turbulent” phase screens the light field undergoes only linear 

diffraction. 

In the experiment the pulse shape and beam profile at the femtosecond laser system output are close to 

Gaussian, therefore, in order to solve the system of equations (1-6) we used the following initial distribution of 

the light field complex amplitude: 
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where 0a  is the input beam radius pulse at 1/e intensity level, Rf is the geometrical focusing distance, 0τ  is a 

half pulse duration of a transform limited pulse at 1/e intensity level. If at the output of the compressor the pulse 

is chirped, then the initial pulse duration )(δτ p  depends on the parameter δ  ( )0( =δτ p =τ0), which 

characterizes the initial phase modulation of the pulse with a constant spectral width: 

)(
1))((

2

2
0

δτ

τδτ
δ

p

p −
±= ,     (1.12) 

The solution to the self-consistent problem (1-6) with initial conditions (11,12) defines the complex amplitude 

of the electric field ),,,( τzyxE  after the self-transformation of the pulse in the nonlinear random medium. 
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2. Researching the supercontinuum cone emission mechanism by numerical 
simulation of high-power femtosecond laser pulse propagation in the 
atmosphere 

 
The new frequencies emerging in a femtosecond pulse while it propagates through the atmosphere 

might be revealed by calculating the frequency-angular spectrum ),,,( zS yx ωθθ ∆  of the light field E(x,y,z,t) 

at a distance z: 

2
),,,(),,,( zUzS yxyx ωθθωθθ ∆∆ = , 

),,,(),,,( ττωθθ ωτθθ zyxEededxdyezU ikyikxi
yx

yx ∫∫ −−−= ∆∆   (2.1) 

where kkkk yyxx /,/ == θθ  are the angles, at which different frequency components 0ωωω −=∆  

propagate in the medium; τ = t - z/vg is a retarded time, vg is a group velocity of a femtosecond pulse in air. The 

frequency ω0 corresponds to 800 nm fundamental laser wavelength. For the cylindrically symmetric pulse 

distribution, the dependence of the angle yx θθθ ==  on wavelength defines the supercontinuum cone 

emission on the blue (visible) side of the spectrum. For better understanding the conical emission phenomenon, 

we first describe the spatio-temporal intensity distributions arising in a single filament regime, i.e. when the 

peak power of the pulse is less than 10 times larger than the critical power for self-focusing in air.  

To simulate the propagation we used the system of equations (1.1-1.5) with input spatio-temporal 

distribution of the electric field in the form of (1.11,1.12), where τ0=150 fs corresponding to 250 fs FWHM, 

intensity I0= 1011 W/cm2, beam radius a0=3.5 mm, diffraction length Ld=ka0
2=96 m, δ = 0. The pulse energy was 

10 mJ and peak power Ppeak = 38 GW = 6.3 Pcr, where Pcr is the critical power for self-focusing in air. Random 

refractive index fluctuations were not taken into account for this particular case of study. 

Redistribution of the intensity in the transverse spatial direction and in time is shown in Fig.1, where the 

scale in the plane (r,τ), where 22 yxr +=  is chosen so that the equal intensity contours at the beginning of 

propagation (z=0) are concentric rings (Fig. 1a). At the start of the filament (z =0.29 Ld ≈ 28 m) the peak 

intensity of the pulse is attained in the temporal slice with 0≥τ  due to the delayed response of the Kerr 

nonlinearity (Fig.1b). The value of the peak intensity reaches ≈4⋅1013 W/cm2 and the ionization starts to defocus 

the trailing part of the pulse. At z=0.32Ld ≈ 31m (Fig.1c) the intensity maximum shifts towards the leading front 

of the pulse, its value reaches 6⋅1013 W/cm2. At the trailing part of the pulse rings are formed. By z=0.4 Ld ≈ 39 

m (Fig. 1d) the diameter of the outer ring exceeds the input beam diameter by a factor of two. At the leading 

front we can see the very intense slices between τ ≈ -80 fs and τ ≈ -50 fs located in the narrow near-axis part 

within the transverse diameter of less than 300 µm. These slices form the “filament” itself, i.e. the structure that 

appears to a human eye as a string of light foci. Formation of dynamic multipeak structure in the spatio-

temporal domain of the pulse is revealed as the spectral broadening in the frequency-angular domain. 
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Fig. 2.1. Spatio-temporal distribution of the laser pulse intensity ),( τrI  at different distances 
z  from the laser system output. The equal-intensity contours are plotted for the following 
intensity values: n

n II 20 ⋅= , where 9,....2,3 +−−=n , 211
0  W/cm10≈I  (a) 0=z ; (b) z 

=0.29 Ld ≈ 28 m; (c) z=0.32 Ld ≈ 31m; (d) z=0.4 Ld ≈ 39 m. 
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Fig. 2.2. Dependence of the conical emission angle on wavelength in the blue wing of the pulse 
frequency spectrum. Experimental data [9] are shown by the black dots and the simulation 
results by the solid curve. Both in the experiment and in the simulations pulse duration τ0=150 
fs (250 fs FWHM), pulse energy is 10 mJ (the ratio of the pulse peak power to the critical power 
for self-focusing Ppeak/Pcr=6.3), input beam radius 0a =3.5 mm, propagation distance z=40 m. 
 
 

Because of the correct consideration of the low-intensity background of the radiation by means of 

simulating the actual beam diameter of 2a0=7 mm, without applying the spatial scaling, we were able to perform 

quantitative comparison between the conical emission angles obtained in the experiment (Fig. 2, symbols) and 

in the simulations (Fig.2, solid curve). Note, that in the previous studies [9] only the relative angles θλ/θ0 , where 

θ0 is the input beam divergence, could be related to the experimental data. The remaining quantitative 

discrepancy between the simulated and experimentally observed conical emission angles, which reaches ≈ 20 % 

for 500 nm wavelength is due to the fact that for the numerical study in this particular experimental conditions 

we were not able to include material dispersion into the simulations. At the same time it has been shown in [23], 

that the inclusion of the material dispersion leads to the increase of the conical emission angles. 
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Fig. 2.3. Spatio-temporal distribution of the supercontinuum sources. The solid lines correspond 
to the equal-intensity contours plotted for the following intensity values: n

n II 20 ⋅= , where 

9,....2,3 +−−=n , 213
0  W/cm10≈I . The upper inset corresponds to the temporal distribution 

of the pulse intensity (solid line) and phase (dashed line) at r=73 µm; the left and the right insets 
correspond to the radial distribution of the intensity (solid line) and the phase (dashed line) at τ 
=-140 fs and τ =217 fs, respectively. Propagation distance z=0.76Ld = 73 m. Pulse parameters 
are the same as in Fig.3. Radial position r=73 µm and temporal positions τ =-140 fs and τ = 217 
fs are indicated by the white dashed lines on the map. 

 

 

For the understanding of the spectral superbroadening mechanism we study the sources of the 

supercontinuum in the pulse. In Fig.3 we present the map of spectral wavelengths corresponding to the 

frequency deviation ( ) ( ) ττϕτδω ∂∂= /,, rr , where ϕ(r,τ)  is the phase of the complex amplitude E. The 

distribution of wavelengths is presented together with the spatio-temporal intensity distribution I(r,τ) (equal-

intensity contours are shown by solid lines). The upper inset in Fig.3 shows the distribution of the electric field 

intensity (solid line) and the phase (dashed line) as a function of time for the radial position r = 73 µm indicated 

by the white dashed horizontal line on the map. The left and the right insets in Fig.3 show the distribution of the 

light field intensity (solid line) and the phase (dashed line) as the function of the radial position at the leading (τ 

=-140 fs) and the trailing (τ =217 fs) edges of the pulse. The temporal positions are indicated by the white 

dashed vertical lines on the map. 
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In Fig. 3 only the narrow near-axis part of the pulse distribution with the diameter of the order of 300 

microns is presented. At this propagation distance z = 0.76 Ld ≈ 73 m the intensity distribution reveals two 

peaks. The peak that is formed in the leading front of the pulse τ =-140 fs is due to the self-focusing in air and 

the peak at the trailing part τ = 180 fs is formed due to the joint contribution of the refocusing and the delayed 

Kerr response. Two distinct ring sources of the short-wavelength components in the frequency spectrum can be 

seen on the map. Each ring source is represented by two white points located symmetrically relatively to the 

beam axis r = 0. The first one is at the leading front of the pulse, τ = -140 fs, and its radius is 73 µm. This is the 

region, where the Kerr-induced convergence is replaced by the plasma-induced divergence of the high-intense 

slices. Time-dependence of the phase along the white dashed line r = 73 µm shows the strong jump slightly 

before τ =-150 fs and, hence, the positive frequency deviation δω >0 (upper inset in Fig.3). Note, that at the 

same time moment τ=-150 fs, the radial phase distribution, reveals a large gradient r∂∂ /ϕ  at the ring r = 73 

µm (left inset in Fig. 3), which means that the new high frequencies born on this ring diverge at large angles to 

the propagation axis. Actually, this is how the conical emission originates from the nonlinear transformation of 

the pulse in the conditions of self-focusing and the plasma-induced defocusing. 

 
Fig. 2.4. The change of the peak intensity in the pulse with propagation distance (solid curve). 
The intensity I0=1013W/cm2. The growth of the supercontinuum energy Wsc/W0 (dotted curve). 
The laser pulse energy W0=60 mJ, the beam radius a0=3 cm, the geometrical focusing distance 
Rf = 0.3Ld=2.1 km. The compression length is indicated by the dash-dotted vertical line: (a) the 
compression length Lcomp=0, the pulse is transform-limited with the duration τFWHM= 35 fs; (b) 
the compression length Lcomp= 0.13 Ld = 919 m, the pulse is negatively chirped with the duration 
τFWHM= 1200 fs; (c) the compression length Lcomp= 0.22 Ld = 1555 m, the pulse is negatively 
chirped with the duration τFWHM= 2000 fs. 

 

The second supercontinuum source starts from the ring at the trailing edge of the pulse τ=180 fs, r = 

68 µm and persists over the whole back front τ > 180 fs. Here the positive frequency deviation δω > 0 is due to 
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the shock formation at the back of the pulse, which can be also seen on the upper inset of Fig. 4, where the 

phase derivative τϕ ∂∂ /  is positive at τ ≥ 187 fs. In the radial phase distribution at the back of the pulse (τ = 

217 fs, see the right inset in Fig. 3) the absolute value of the phase gradient r∂∂ /ϕ  is much smaller than in the 

front of the pulse. In addition, there are no intensity rings, corresponding to the radial phase jumps (compare the 

radial intensity distributions shown by the dashed lines in the left and the right insets in Fig.3). Hence, the 

spatial distribution of the high-frequency components born due to self-steepening at the trailing edge of the 

pulse is not in the form of the conical rings. 

The knowledge of such a map of the supercontinuum sources is a powerful tool for optimizing the 

conversion efficiency to the white light. Indeed, the increase in the conversion efficiency depends on the spatio 

– temporal gradients of the light field. Among the possible ways to increase the field gradients is to introduce a 

negative chirp into a femtosecond pulse. The negatively chirped pulse will be compressed while propagating in 

the medium with normal group velocity dispersion. If the compression length ωτ kLcomp ′′= /2
0  is of the order of 

the self-focusing length Lsf, then the simultaneous spatial and temporal contraction of the radiation leads to the 

high spatio-temporal field gradients and large conversion efficiency to the white light. Additional parameter, 

which allows one to provide localization of energy in the prescribed position along the propagation direction, is 

the initial divergence (convergence) of the beam wavefront. 

To demonstrate the possibility to govern the position of energy concentration and conversion efficiency 

to the white light, we have numerically studied the propagation of initially chirped and geometrically focused 

pulses. The parameters of the pulse in the simulations corresponded to atmospheric experiments: half duration 

of the transform-limited pulse and beam radius at e-1 intensity level were τ0 = 21 fs and a0 = 3 cm, respectively, 

energy W0=60 mJ, central wavelength 800 nm. The full width at half maximum (FWHM) duration 

corresponding to τ0 = 21 fs was τFWHM= 35 fs. The beam was slightly focused at a distance fR  = 0.3Ld, where Ld 

= ka0
2 = 7000 m. 

Fig.4 shows the dependence of the maximum intensity and the white light energy on the propagation 

distance z for the pulses with different initial chirp. By the white light energy we mean the energy 

∫=
max

min

),()(
λ

λ

λλ dzSzWsc  contained in the short wavelength band with minλ = 500 nm and maxλ = 700 nm. In the 

case of a transform-limited pulse with τFWHM= 35 fs (Fig.4a) the supercontinuum energy Wsc is not higher than 

0.002% of the input pulse energy. If a negative initial chirp is introduced into the pulse so that τFWHM= 1200 fs 

(Fig.4b) and all the other parameters are the same as in the case of a transform-limited pulse, the conversion 

efficiency is increased by more than two orders of magnitude and reaches 0.3% of the input pulse energy W0. 

The explanation of this phenomenon is in the fact that spatial localization of energy due to geometric and 

nonlinear focusing is attained at the same distance as temporal localization of energy caused by the pulse 

compression. Indeed, the pulse with τFWHM= 1200 fs is compressed down to its minimum duration at a distance z 

= Lcomp = 0.13Ld. At the same time, the distance of the nonlinear focusing zf can be estimated as [24]: 
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fsff Rzz
111

+= ,      (2.2) 

where zsf is the self-focusing length of the collimated beam [24]. For the chirped pulse with the duration τFWHM= 

1200 fs the peak power is 48 GW. In air the critical power for self-focusing Pcr = 6 GW. Following [24], we 

estimate the self-focusing length of a collimated beam as zsf = 0.19Ld and the resulting length of the nonlinear 

focusing from the Eq.(1.1) as zf  = 0.12 Ld , which is close to the compression length Lcomp = 0.13Ld.  

The transform – limited pulse experiences temporal broadening from the start of the propagation. By the 

distance z=zsf = 0.02Ld , which could be the self-focusing distance for a 35 fs 60 mJ pulse without material 

dispersion in the medium, the pulse duration increases up to 180 fs due to the dispersive broadening. As the 

result, the actual start of the filament occurs at z = 0.09Ld . The pulse duration at this distance is already 800 fs. 

The nonlinear phase gradients and the supercontinuum yield are low. 

For the pulse with a longer chirp, τFWHM = 2000 fs, the spatial localization occurs earlier in the 

propagation than the temporal localization, since Lcomp > zf (Fig4c). Therefore, the conversion efficiency equal to 

~ 0.02% to the supercontinuum is less than in the case of τFWHM= 1200 fs but is still an order of magnitude 

larger than in the case of a transform-limited pulse.  

By trying many combinations of the initial phase modulation of the pulse (pulse chirp) and geometric 

focusing distance we have found several optimum parameters for which the conversion efficiency to the band 

500 – 700 nm increases up to 5% of the input pulse energy W0 (see Table 2.1). 

 
Table 2.1. Conversion efficiency to the white light in air defined as the ratio of the energy Wsc 
contained in the band 500 – 700 nm to the total input pulse energy W (expressed in percentage). 
The radius at e-1 intensity level of the input beam is a0. The conversion efficiency for several 
favorable combinations of the input pulse parameters is underlined. 

 

Pulse duration, fs 

W=60 mJ 
a0 =15 mm 

Rf= inf 
(parallel beam) 

W=60 mJ 
a0 =15 mm 
Rf=0.3 ka0

2 
(convergent beam) 

W=60 mJ 
a0 =15 mm 

Rf=- 0.3 ka0
2 

(divergent beam) 

42, transform limited 0.04% 0.1% 0.002% 
300, negatively chirped 3% 5% 0.6% 

1200, negatively chirped 2% 1% 0.2% 
 
 

Filamentation in the turbulent atmosphere 

For the simulations of the filamentation in atmospheric turbulence we considered propagation of 

Gaussian pulses with half duration at e-1 intensity level τ0 = 27 fs, centered at the wavelength λ = 800 nm and 

peak power up to P0 = 0.4 TW, which is more than 30 times greater than the critical power for self-focusing in 

air. Beam radius at 1/e level of intensity was a0 = 0.82 cm. Averaging was performed over 100 pulses. Each of 

them was propagating through statistically independent set of phase screens simulating atmospheric fluctuations 

of the refractive index. The distance between two neighboring screens was z∆ = 10 m. The atmospheric 
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structure constant Cn
2 was varied in the range Cn

2 = 3·10-15 - 15·10-15 cm-2/3, the inner scale being in the range 

l0 = 1 – 10 mm. Outer scale was L0 = 1 м. The atmospheric path length was 80 m. 

 

 
Fig. 2.5. Phase screens with the modified von-Karman spectrum (6) imitating the light field 
phase growth after 10 m of propagation in atmospheric turbulence with the structure constant 
Cn

2=1.5·10-14 cm-2/3 , the outer scale L0 = 1 m and the inner scale (a) l0 = 1 mm, (b) l0 = 5 mm, 
(c) l0 = 10 mm. The size of the phase screen fragments is 2.3 cm x 2.3 cm (the full size is 
9.2cm x 9.2 cm). (d) The phase screen with Gaussian spectrum of random fluctuations and 
characteristic spatial scale 1.8 mm. 
 
 

 
Fig. 2.6. Formation of intensity hot spot in the transverse section of a femtosecond pulse: τ0 = 
27 fs, peak power P0 = 2.0·1011 W, central wavelength 800 nm, beam radius a0 = 0.82 cm, 
propagation distance z = 21 m. Atmospheric turbulence is characterized by the structure 
constant Cn

2=1.5·10-14 cm-2/3 , the outer scale L0 = 1 m and the inner scale (a) l0 = 1 mm. 
 

Fig. 5 shows some chosen realizations of atmospheric phase screens generated by the modified spectral 

method [19-22]. Negative phase (darker colors) corresponds to focusing. The wavefront is tilted from the upper 

left corner towards the lower right corner. The outer scale L0 = 1 м is the same for all the panels (a-c). The effect 

of the inner scale l0 can be deduced by comparing panels a, b and c. All three panels are generated from the 

same set of random amplitudes; however the value l0 changes from 1 mm (Fig.5a) to 10 mm (Fig.5c). With 

increasing l0 the small-scale fluctuations are smoothed. The phase screen in Fig.5d is generated from the 

Gaussian spectrum. This screen contains inhomogeneities with only one spatial scale and is shown with the 

(a) (b) (c) (d) 
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purpose of comparison with phase screens generated from the von Karman spectrum (1.6). It is obvious, that a 

wide range of atmospheric spatial scales cannot be modeled with Gaussian phase screens. 
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Fig. 2.7. (a) The distance zf to the formation of the filament with the number Nf. in the case 
of different pulse peak powers: P0 = 1.0·1011  W (triangles), P0 = 1.3·1011  W (circles), 
P0 = 2.0·1011  W (squares). 
(b) The probability to observe exactly Nf. filaments at a given distance z= 25 m (squares), z= 
35 m (circles), z= 45 m (upper triangles), z= 55 m (lower triangles). The parameters of 
atmospheric turbulence are Cn

2 = 1.5·10-14 cm-2/3, L0 = 1 m, l0 = 1 mm. 
 

In the central slice of the pulse and in the vicinity of intensity maximum the size of the region 

containing the critical power for self-focusing in air is around 1.6 mm. Therefore, we can expect that the regions 

with local focusing and typical size of the order of 1.6 mm will be the seeds for the filaments. The formation of 

a filament from the region of local focusing induced by atmospheric turbulence is illustrated in Fig.6 (white spot 

in the upper right part of the intensity distribution). At this distance we observe the formation of the first 

(a) 

(b) 
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filament. The subsequent filaments will be developed further in the propagation direction. Only the numerical 

simulations can predict their locations.  

Average characteristics of multiple filaments obtained from the Monte Carlo simulations are shown in 

Fig.7. The distance zf of filament formation in the turbulent atmosphere increases with the number of filaments 

Nf. Vertical lines indicate the root-mean-square deviation of the distance zf from its average value. The reason 

for this deviation is random phase perturbations on the phase screen, which lead to different positions of 

filament formation in each laser shot. In the simulations a laser shot is equivalent to one realization of the chain 

of atmospheric phase screens along the propagation path. 

The number of filaments Nf in the transverse section of the pulse increases with propagation distance 

(Fig.7a). The larger is the peak power of the pulse the larger number of filaments can be registered at the same 

distance z. Indeed, if the peak power increases twice from P0 = 1011 W (Fig.7a, curve marked by triangles) to P0 

= 2 1011 W (Fig.7a, curve marked by squares) the average distance towards the first filament formation 

decreases twice. At longer distances, as, for example, z = 65 m, the number of filaments increases from 1 in the 

case of P0 = 1011 W to 7÷9 in the case of P0 = 2 1011 W. Besides, the root –mean-square deviation of the 

filament formation distance zf from its average value decreases. Thus, with increasing pulse peak power, one 

can predict the filament formation distance with higher accuracy.  

From Fig. 7 one can see that due to the random fluctuation of the filament formation distance, it is hard 

to predict the exact number of filaments formed from shot to shot at a given propagation distance. The 

probability to observe a certain number of filaments at a given distance z is shown in Fig.7b. Here, the 

probabilities corresponding to one propagation distance are marked by the same symbol and connected by solid 

lines. At a distance of z = 25 m (squares) the filaments will not be created for this input pulse parameters. With 

increase in distance to z = 35 m (circles) there is approximately 50% probability to observe 1 filament. Further 

on at z = 45 m (upper triangles) the probability to see multiple, namely three filaments, increases to 40%. Thus, 

the probability maximum shifts towards the larger number of filaments with increasing z. 

Multiple filamentation in the atmosphere depends on the strength of turbulence. The stronger is the 

turbulence the faster is the filament formation along the propagation distance. If the structure constant Cn
2 

experiences five-time increase (from 3·10-15 to 15·10-15 cm-2/3) then the first several filaments are formed, on 

average, closer to the laser system output (i.e. the position z = 0). Instead, the increase in the inner scale of 

turbulence l0 slows down the filament formation. The five-time increase in the inner scale l0 from 1 mm to 5 mm 

leads to approximately one-meter delay in the formation of the first four – five filaments. The dependence of the 

filament formation distance on the inner scale of turbulence can be easily understood. The larger value of l0 

corresponds to the suppression of small-scale phase fluctuations. As shown earlier, exactly these small-scale 

fluctuations located in the vicinity of the beam top and having the typical size of the order of 1.6 mm contain the 

critical power for self-focusing. With the decrease in the amplitude of such fluctuations, formation of intensity 

hot spots in the beam slows down and delays the formation of filaments. 
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3. The theoretical and experimental study of the fundamental problems of 
scattering of a high-power femtosecond pulse in the atmosphere: nonstationary 
light scattering in gases and aerosols; nonlinear inelastic nonstationary light 
scattering by aerosols particles 
 
3.1. Theory of nonstationary light scattering in gases and aerosols 

3.1.1. Femtosecond radiation elastic scattering on a transparent spherical particle 
A weakly absorbing spherical particle acts as a focusing optical system and increases the intensity of the 

optical radiation incident on it in the inner zones located near particle’s illuminated and shadow surfaces. This 

increase may achieve several orders of magnitude for optically “large” particles. Up-to-date laser systems are 

capable of generating femtosecond pulses, whose duration is about a few optical cycles and the peak intensity is 

as high as 1012 ~ 1015 W/cm2. Consequently, as such radiation is incident on aerosol particles due to their 

focusing properties it is possible to obtain even higher intensities in some local regions of the particles. This 

may give rise to conditions favorable for appearance of nonlinear effects, such as multiphoton and tunnel 

ionization, multiphoton absorption fluorescence, stimulated Raman scattering, and higher-harmonic generation. 

In this connection, it is important to study the dynamics of formation of the optical field intensity in spherical 

particles at nonstationary scattering of laser pulses to find the upper achievable level of this intensity, its spatial 

location, and dependence on the time parameters of the radiation, as well as the particle size. 

To study the temporal evolution of the electromagnetic field inside microparticles the spectral Fourier 

method was applied in combination with the linear theory of diffraction, which is known as the Lorenz-Mie 

theory in the case of incidence of a plane monochromatic light wave on a spherical particle. In this case the 

initial nonstationary problem of spectral broadband radiation diffraction at a particle can be reduced to the 

stationary problem of scattering of a set of monochromatic Fourier harmonics. The scattering properties of the 

particle in this case are characterized by the, so-called, spectral response function ( ; )δ ωE r , which is in fact the 

traditional Lorenz-Mie series written for all frequencies in the spectrum of the initial pulse [1,2]. 

In numerical calculations, we used the following representation for the electric field strength of the incident 

linearly polarized radiation: 

( ) 0 0
* ( ( ) / )

0( ; ) ½ ( ; ) ( ; ) = ½ ( ) ( ) . .i t z a ci i i
yt t t E g t S e c cω − +

⊥
⎡ ⎤= + ⋅ +⎢ ⎥⎣ ⎦

r E r E r e rE ,  (3.1) 

where g(t) and S(r⊥) are the temporal and spatial pulse profiles, respectively; ω0 is the pulse carrier frequency; 

E0 is the real field amplitude; r = r⊥ + ezz ; x yr x y⊥ = +e e ; , ,x y ze e e  are the unit vectors in the direction of the 

axes x, y, and z, respectively; t is time; c is the speed of light in vacuum. It was believed that the dielectric 

spherical particle with the radius 0a  is located at the origin of coordinates, and the laser pulse diffracting at it 

propagates along the positive direction of the axis z. The temporal and spatial profiles of the beam were 

specified by the Gaussian functions 
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with the following parameters: 0,pt t  are the pulse duration and pulse delay; w0 is the spatial half-width. 

To calculate the distribution of the internal optical field in the particle and apply the results of the 

stationary Mie theory, we should first pass on from the time coordinates to the spectral frequencies, representing 

the initial light pulse by its Fourier transform: 
0 0( )

0 0( , ) [ ( , )] ( ) ( ) ik z ai i
yt E S G e− +

ω ⊥ω = ℑ = ω − ωE r E r e r ,   (3.3) 

where ℑ  is the operator of Fourier transform; ( )G ω  is the frequency spectrum of the initial laser pulse; 

0 0k c= ω . 

Equation (3) being multiplied by i te ω  determines the spectral component of the initial pulse in the form of 

a monochromatic wave with the amplitude  

0 0( ) ( ) ( )yE S G⊥ω = ω − ωA e r .     (3.4) 

Diffraction of this wave at a spherical particle is described within the framework of the stationary 

approximation of the Maxwell equations: 

rot ( ; ) ( ; );ikω ωω = − ωE r H r  rot ( ; ) ( ; )ai kω ωω = ε ωH r E r    (3.5) 

where ( ; )ω ωH r  is the magnetic field strength vector; aε  is the complex permittivity of the particulate 

substance; k c= ω . 

The boundary conditions on the surface of a spherical particle ( 0r a= =r ) consist in continuity of the 

tangent components of the inner field ωE  and ωH  at transition through the surface: 

[ ] ( ) [ ] ( );i s i s
r r r rω ω ω ω ω ω

⎡ ⎤ ⎡ ⎤× = + × × = + ×⎣ ⎦ ⎣ ⎦E n E E n H n H H n ,  (3.6) 

where rn  is the vector of the external normal to the particle surface, and the superscript “s” corresponds to the 

field of the scattered wave. 

Solution of Eq. (5) taking into account Eqs. (4) and (6) with the spatial profile of the light beam specified 

by the Gaussian function (2) leads to the following representation of, for example, the internal electric field of 

the particle: 

( )(1) (1)
0 0 0 0

1

( ; ) ( ) ( ) ( , , ) ( ) ( , , )
n

n nm a nm nm a nm
n m n

E G R c m ka kr id m ka kr
∞

ω
= =−

ω = ω − ω ⋅ θ ϕ − ⋅ θ ϕ∑ ∑E r M N ,    (3.7) 

where 2 1
( 1)

n
n

nR i
n n

+
=

+
; (1) (1),nm nmM N  are spherical vector-harmonics; am is the complex refractive index of the 

particulate substance. The generalized coefficients ,nm nmc d  are related to the Mie coefficients for the plane 

wave ,n nc d  (here we use the designations from [1]) as follows: 

( )nm n nm TH
c c g=  ; ( )nm n nm TE

d d g= , 
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where ( ) ( ),nm nmTH TE
g g  are the beam shape coefficients (BSC) being two-dimensional integrals of the radial 

field components of the initial beam. 

Within the approach considered, the internal electric field of the particle can be written as a convolution 

integral of the spectrum of the initial laser pulse and the spectral response function of the particle: 

[ ]1
0 0( ; ) ( ) ( ; )t E G−

δ= ℑ ω − ω ωE r E r .     (3.8) 

Here ( ; )δ ωE r  denotes the series in the right-hand side of Eq.  (7). Note that the scattered field can be expressed 

in a similar way. 

The complex refractive index of the particulate substance am  and the laser radiation wavelength 0λ  in 

numerical simulation were taken as 81.33 10am i −= − ⋅  and λ0 = 0.8 µm. These values correspond, for example, 

to water droplets illuminated by Ti:Sapphire laser pulses. The frequency dispersion of the refractive index of 

particles in the selected wavelength region was neglected along with the nonlinear optical effects, for example, 

effects of multiphoton ionization and multiphoton absorption. This neglect may lead to modification of the 

spatial structure of the internal optical field and, in principle, to the decrease in its intensity. 

 

 
a) b) 

 
c) 

 
d) e) f) 

 
Fig. 3.1. Spatial distribution of relative intensity of the internal optical field in the main cross 
section of a water droplet with a0 =20 µm upon its irradiation by a Gaussian beam with the 
parameters λ = 0.8 µm, tp = 100 fs, t0 = 200 fs, and = w0/a0 = 10 at different time moments: t = 
(a) 200, (b) 360, (c) 470, (d) 580, (e) 640, and (f) 800 fs. The light beam is incident from the 
left. 
 

The temporal dynamics of formation of the optical field in a droplet illuminated by an ultrashort laser 

pulse being represented in space by a plane wave is illustrated in Fig. 1, which depict the spatial distribution of 
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the relative intensity of the internal field ( )* 2
0( ; ) ( ; ) ( ; )B t t t E= ⋅r E r E r (field inhomogeneity factor) in the 

equatorial cross section of the particle. For clearer presentation, all the values are additionally normalized to the 

maximum value of the factor B in the corresponding time section. 

The analysis of our simulation results shows that the spatial distribution of the internal optical field in 

weakly absorbing micron-sized particles illuminated by a femtosecond laser pulse has some peculiarities as 

compared to the case of its illumination by a monochromatic light wave. 

The first peculiarity is associated with the nonstationary character of the diffraction process: there exists 

some transient time for establishment of the characteristic pattern of optical field focusing inside the particle. 

First, as the pulse propagates through the particle, the maximum of the optical field intensity spatial distribution 

is formed near the shadow surface; then the backward propagation of the light wave due to reflection from the 

inner particle surface leads to transition of the intensity maximum into the illuminated hemisphere, in which the 

light rays are again reflected and again form the “back” peak, thus causing the pulsating character of the time 

dependence of the internal field intensity. After the pulse propagates through the particle its afterglow is 

observed due to the delay of the radiation in the excited particle’s whispering gallery modes. 

The second peculiarity is connected with the spectral width of the short laser pulse. It turns out that as 

such a pulse is scattering at the particle one almost always observes the resonant excitation of the internal 

optical field when the eigenfrequencies of one or several particle high-Q morphology-dependent resonances 

(MDR’s) fall in the central part of the incident pulse spectrum. This leads to the mentioned above delay of the 

radiation in the particle and to the decrease of the absolute maximum of the internal optical field intensity as 

compared to the stationary case. As the particle size increases, these effects become more pronounced. The 

largest decrease of the intensity maximum is observed at the exact resonance excitation, when the carrier 

frequency of the incident light wave matches the frequency of one of MDR’s and can achieve several orders of 

magnitude (see Fig. 2). 
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Fig. 3.2. Dependence of the maximal intensity of internal optical field Bm in a water droplet on 
the duration of a laser pulse tp for various droplet sizes at not resonant (а) and resonant (b) 
elastic scattering. Droplet radius a0 on fig. 1а corresponds to the following values: 0a = 1 (1); 5 
(2); 10 (3); 11 (4); 15 (5); 20 (6); 22 (7); 30 (8); 40 (9); 50 µm (10). For fig. 1b the radius of 
particles equals: 0a  = 5.8762 µm (1); 17.133790 (2); 22.750191 (3). 
 
 

Figure 3 depicts the calculated dependence of the optical fields outside a water droplet I(t) (in the far 

zone) at diffraction of pulsed radiation with different pulse duration at it. 
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Fig. 3.3. Relative (normalized to the maximum value) intensity of the backscattered wave field 
as a function of dimensionless time t / tp at scattering of pulsed radiation (λ = 0.81 µm, tp = 100 
fs (a) and 1 ps (b)) by water droplet with a0 = 10 µm. 
 
 

Elastic scattering of a train of femtosecond pulses by a transparent particle 
A characteristic feature of femtosecond radiation is high time coherence in a train of pulses. This may 

lead to specific effects of interaction between pulses and a medium. 

We studied the problem of formation of the inner field intensity in a transparent particle irradiated by a 

series of short pulses. 

The next figures show the calculated results. It is clearly seen that in some cases the fields generated by 

different time-separated pulses in the particle-microcavity are added in phase. This is especially pronounced 

when the spectrum of the repetitively pulsed radiation coincides with strong resonance modes of the droplet. 

Figures 4a –6a depict the time dependence of the relative intensity 

( ) ( ) ( )( ) 2
0; ; ;B t t t E∗= ⋅r E r E r  

of the internal optical field within a water droplet in the zone of its absolute maximum Bm (shadow hemisphere) 

as the droplet is exposed to the train of six 100-fs pulses with the different pulse ratio. function Iδ(ω) (dashed 

line) in arbitrary units (b). Figures 4b–6b show, in arbitrary units, the spectral profile of the train at these values 

of the pulse ratio and the function ( ) ( ) ( )( ); ;Iδ δ δω ω ω∗= ⋅E r E r , where ( );δ ωE r  is the so-called spectral 

response of the droplet [3]. These calculations were carried out by the technique described in Refs. 1 and 4 and 

involving the use of the Fourier method in combination with the theory of linear light scattering. 
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Fig. 3.4.Time dependence of the relative intensity Bm of the internal optical field within a water 
droplet (a0 = 10 µm) exposed to a train of six pulses with λ = 0.8 µm, tp = 100 fs, and the pulse 
ratio sp = 5 (a); the spectral profile of the train of pulses with the parameters corresponding to 
Fig. 4a vs. relative frequency ( )0 0ω ω ω ω∆ = −  (solid line), and the function Iδ(ω) (dashed 
line) in arbitrary units (b). 
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Fig. 3.5.The same as in Fig. 4a but at sp = 10. 
 

 
Fig. 3.6.The same as in Fig. 4a but at sp = 20. 
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It is clearly seen from Figs. 4 –6 that in some cases the fields from individual pulses add in-phase in the 

particle. This is especially true, when the local spectral maxima in the train spectrum coincide with the strong 

resonance modes of the droplet. Thus, for example, at sp = 10 and 20, when the condition (
1

2p nps ω
−

= ∆ ) is 

fulfilled, we can see an increase in the field intensity in the gap between pulses due to excitation of the natural 

mode lying just near the central frequency TE85,3. At the same time, at sp = 5 this mode is excited inefficiently. 

Thus, the main difference of the repetitive scattering of pulses by a spherical microparticle from 

scattering by a single pulse consists in the possibility of some phasing of individual pulses in the train, when the 

whispering gallery modes falling within the spectral profile of the train are excited resonantly. In this case, the 

larger is the frequency mismatch between the natural mode and the central frequency of the incident radiation, 

the shorter should be the gap between the pulses. 

 
 

Integral cross-section of elastic light scattering 
Consider now the behavior of integral scattering characteristics, for example, the cross section of 

scattering by a spherical particle as a function of the pulse duration. 

The time-integral cross section of scattering by a particle is calculated by the equation following from 

the law of energy conservation in the case of nonstationary scattering  

( ) 1

r

s i r
S

W dt n dσ
∞

−

−∞

= Π Ω∫ ∫ ,      (3.9) 

where *Re
8 s s
c E H
π

⎡ ⎤Π = ×⎣ ⎦  is the Pointing vector of the scattered field, rS  is the area of a sphere with the 

radius 0r λ  ( 0λ is the carrier wavelength in the pulse). The integral absorption cross section is, 

correspondingly, equal to 

( )
21

a

ab i ab
V

W dt dV Eσ α
∞

−

−∞

= ∫ ∫ ,     (3.10) 

Thus, the integral extinction cross section can be obtained as ext s abσ σ σ= + . 

Introducing the spectral factor of scattering intensity ( )sK xω
, where 

ax
c

ω
= , and ω is the frequency 

inside the spectral profile of the pulse, for the integral scattering cross section we can write  

( )
2

2
0

0

( )s s
a d G K x

U
ωπσ ω ω ω

∞

−∞

= −∫ ,    (3.11) 

where ( )2
0U G dω ω

∞

−∞

= ∫ . 
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Figure 7 depicts calculated 2
s

sK
a

σ
π

=  for the radiation with 0λ = 0.81 µm versus the diffraction 

parameter 
0

2
a

ax π
λ

= . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7. Smoothing effect of particle optical characteristics illuminated by fs laser pulse 
 

The results calculated agree with Shiphrin and Zolotov results, where it was noted for the first time that 

Ks smoothes with shortening of the pulse of femtosecond radiation. This parameter begins to tend 

asymptotically to 2 for femtosecond pulses with the duration < 10 fs at lower diffraction parameters than in the 

case of stationary radiation. 

 
 

3.1.2. Linear inelastic scattering of femtosecond laser pulse on microparticle with 

fluorescent molecules 
Consider the following formulation of the problem. A weakly absorbing, spherical particle of the radius 

0a , containing some amount of the fluorescing (active) substance, is exposed to a plane electromagnetic wave 

with the central frequency Lω . It is believed that the fluorophore molecules are distributed uniformly over the 

particle volume and have the concentration 0C , which is much lower than the concentration of molecules of the 

basic substance in the particle. 

Write the wave equation for the complex vector of the electric field strength of spontaneous emission 

inside the particle ( ; )s tE r : 

2 2

2 2 2 2 2

( ; ) 4 ( ; ) 4 ( ; )rot rot ( ; ) a s a s s
s

t t tt
c t c t c t
ε ∂ πγ ∂ π ∂

+ + = −
∂ ∂ ∂

E r E r P rE r ,   (3.12) 

where aγ , aε  are the conductivity and permittivity of the particulate matter; c is the speed of light in vacuum; 
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sP  is the polarization vector of the medium at the frequency of the secondary wave sω . The medium is 

believed to be nonmagnetic and isotropic; the dispersion effects are ignored. The nonlinear interaction between 

the waves is assumed to be weak, and pump depletion is neglected. The polarization sP  in the right-hand side 

of Eq. (12) accounts for the field of molecular emission at the frequency of the considered dipole transition. 

Represent the electric field vector of the nonlinear wave as a series in terms of the eigenfunctions of the 

resonator particle , ( )TE TH
nE r , describing the spatial profile of the field of the TE and TH modes with the 

eigenfrequencies ,TE TH
nω : 

( ; ) ( ) ( ) ( ) ( )TE TH
s n n n n

n

t A t iB t⎡ ⎤= ⋅ − ⋅⎣ ⎦∑E r E r E r ,    (3.13) 

where the coefficients ,n nA B  account for the contribution of each eigenmode to the total field [5].  

We will consider only the waves with ТЕ polarization, assuming that the analysis for the ТH modes is 

quite analogous. The corresponding equations for the amplitudes have the form: 
2

2
2 ( ) 2 ( ) ( ) ( )n n n n n n

d dA t A t A t J t
dt dt

+ Γ + ω = ,     (3.14) 

where the "inducing force" is expressed in the following form: 
2

*
2

4 ( ; )( ) ( )
a

s
n n

a V

tJ t d
t

′π ∂′ ′= −
ε ∂∫

P rE r r .     (3.15) 

Here Va is the particle volume; nΓ  is the damping coefficient of the mode due to the loss for absorption 

in the particulate matter and the emission of  radiation through the particle surface.  

A particular solution of the inhomogeneous equation (14), representing only vibrations under the effect 

of the  "external" force, can be written as  

*

0

4 ( ; )( ) ( ) ( ; ) sinn

a

t
tn s

n n s n
a nV

tA t d t t e t dt′−Γ⎡ ⎤′πω ′ ′ ′ ′ ′ ′= + − ω⎢ ⎥ε ω⎣ ⎦
∫ ∫

P rE r r P r ,   (3.16) 

where 2 21n n n nω = ω − Γ ω  is the natural frequency of the mode with allowance for the losses. 

The macroscopic polarization ( ; )s tP r  of a small medium volume Vδ  characterized by the radius-

vector r  can be considered as a sum of dipole moments of individual molecules falling within this volume: 

(3)( ; ) ( ) ( )
N

s j j j
j

t d t= δ −∑P r p r r ,     (3.17) 

where N is the number of active (in terms of the considered dipole transition) molecules; jp  is the vector 

characterizing the dipole orientation in space ( jp = 1); (3) ( )jδ −r r  is the Dirac delta in the 3D space. It is well-

known that the excitation of dipoles is caused by quantum fluctuations of the field (the so-called zero 

fluctuations of the field of vacuum), and the law of dipole emission can be represented as  : 

( )0 0 0( ) expjd t d i t t= ω − Γ ,     (3.18) 
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where 0d  is the quantum average of the off-diagonal dipole matrix elements of the molecule; 0ω  is the 

frequency of the dipole transition in the molecule; 0 21/TΓ =  is the damping coefficient; 2T  is the cross-

relaxation time of the dipole transition. 

Define the operation of averaging of an arbitrary function f  over the random realizations of the 

characteristics jr  and  jp  in following way: 

4 4
j

V

d df f
Vδ π

Ω
=

δ π∫ ∫
r

,      (3.19) 

where dΩ  is an element of the solid angle. Equation (19) means that statistical averaging is performed over the 

position with the uniform probability density 1 Vδ  and over orientations with the uniform probability density 

1 4π . 

For the squared eigenmode amplitude of the nonlinear wave field of spontaneous emission, the 

following approximate equation can be written: 

0

22
22 20

2

16
( ) ( ) ( ; )

3
a

t
n n

a V

d
A t e C t d− Γ

⎡π
′ ′ ′≈ +⎢

ε ⎢⎣
∫ E r r r  

2 2

0 0

( ) ( ; ) sin ( ) ( ; ) ( )
4

n n

a a

t t
t tn

n n n n n
V V

gd C t t e t dt d C t t e F t dt′ ′−γ −γ
⎤

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ω − ∆ω + − ⎥
⎥⎦

∫ ∫ ∫ ∫E r r r E r r r ,  (3.20) 

where 0n nγ = Γ + Γ  is the damping coefficient for the mode of the secondary field in the resonator; 

( ; ) ( ; ) /C t N t V= δr r  is the space- and time-dependent concentration of excited molecules of the active 

substance; ( )2 2 2
n n n ng = ω ∆ω + γ  characterizes the spectral line shape of spontaneous emission in the 

resonator; ( ) ( )( )( ) sin cosn n n n nF t t t= ∆ω ∆ω + γ ∆ω ; 0n n∆ω = ω − ω . 

For the two-level scheme in the approximation of weak pumping, when 2 1N N<< , where 1N , 

2N N=  are the numbers of molecules at the lower and upper levels of the working transition, the 

corresponding equation has the form: 

2 12
1 21 2( ; ) ( )L

L

dN N I t N t
dt

σ
= − Γ

ω
r ; 1 2 0N N N+ = .    (3.21) 

In Eq. (21) 
2

0 12
12

4
3

L

a

g
c

πω µ
σ =

ε
 is the absorption cross section of the one-photon transition; 

( )( )2 2
21 0 21L Lg = Γ ω − ω + Γ  is the Lorentz line width of the transition; 21Γ  is the rate constant of the 

spontaneous transition; ( ; )LI tr  is the intensity of laser radiation at the principal frequency inside the particle. 

The solution of Eq. (21) has the form of the convolution integral: 

21 ( )12
2 1

0

( ; ) ( ; )
t

t t
L

L

N t N I t e dt′−Γ −σ ′ ′=
ω ∫r r .    (3.22) 
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For the pump wave field, we can also use the representation (13) and take into account the orthogonality 

of the eigenfunctions, that is, 
2 2

( ; ) ( ) ( )
8

a
L m m

m

c
I t a t

ε
= ⋅

π ∑r E r  (as before, only the TE modes of the field 

are considered). Then, upon the substitution of 2 ( ; )N tr  for ( ; )N tr  in Eq. (20), we obtain: 

21

2
2 3 (1)12 0 02

( )
3

t
n n nm

mL a a

c C d
A t k e−Γπσ

= Π ×
ω ε ε ∑  

( )0 2121 21
2 22 ( )

0 0 0

( ) ( )
4

n

t t t t
t tt tn

m n m
ge a t e dt e F t dt a t e dt

′−
′′ ′′− Γ − γ −ΓΓ Γ⎡ ⎤

′ ′ ′ ′ ′′ ′′× +⎢ ⎥
⎣ ⎦

∫ ∫ ∫ ,  (3.23) 

where 0C  is the concentration of active molecules; 
2 2(1) 3 ( ) ( )

a

nm n n m
V

k d− ′ ′ ′Π = ⋅∫ E r E r r  are the spatial 

overlapping integrals for the modes of the primary and secondary fields inside the particle; n nk c= ω . 

Consider the case of short pumping of the particle, when the inequality ( ) 1
21pt −<< Γ , where pt  is the 

laser pulse duration, is valid. Assume that the medium is excited by a rectangular pulse, and at the time pt t=  

the population of the upper level of the transition is maximal: 12
2 0 0( ) ( )m

L p
L

N N I tσ
≈

ω
r r , and 2 0

mN N<< , 

where 
2 20

0 ( ) ( )
8

a
L m m

m

c
I a

ε
= ⋅

π ∑r E r is the intensity of the principal wave inside the particle. Once the 

pumping is terminated ( pt t> ),  2N  decreases exponentially with time according to Eq. (21): 

( )2 2 21( ; ) ( ) exp ( )m
pN t N t t= −Γ −r r . Then the squared amplitude of the mode of the secondary field takes the 

following form (for pt t> ): 

21

2
22 ( )3 0 (1)12 0

0( )
6

pt t
n n n p m nm

mL a a

c d
A t C g k t e a−Γ −πσ

≈ ⋅ Π
ω ε ε ∑ .   (3.24) 

which accounts for the relation between the damping constants: 

21 0,nΓ << Γ Γ .      (3.25) 

Introduce the variable: 
2

12 0

6s
L a a

c d
G

πσ
=

ω ε ε
,     (3.26) 

which has the meaning of the rate of transformation of the pump energy absorbed by the active molecule into 

the energy of its spontaneous emission. For the intensity of the field of spontaneous emission in the particle 

excited by a short laser pulse, we obtain the equation: 

21
2( ) 3 0 (1)

0( ; ) ( )pt t
s s n n m n nm

n m

I t C G e g k w−Γ −= Π∑∑r E r     (3.27) 
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where 
20 0

8
a

m m p

c
w a t

ε
=

π
 is the amplitude coefficient in the corresponding expansion of the energy density of 

the incident wave inside the particle. 

Then the total energy of spontaneous radiation emitted from inside the particle to the outside can be 

expressed as follows: 

4 0 (1)
03

218
a

s s n n n m nm
n m

W C G g w
c
ε

= η ω Π
π Γ ∑ ∑  ; pt t> .    (3.28) 

Here ( )1 4n a a nη = − πγ ε ω . 

Introduce the total cross section of spontaneous emission of the particle for one-photon transitions at the 

nonstationary excitation (1)
sσ  as a ratio of the energy of the emitted secondary field sW  to the energy density in 

the incident pulse. For the rectangular pump pulse, we have: 

2(1) 4 0 (1)
03

0 218
s a

s s n n n m nm
n mp

W C G g a
I t c

ε
σ = = η ω Π

π Γ ∑ ∑ ,    (3.29) 

where 
2 2 20 0

0m ma a E= ; 0E is the electric field strength of the incident light wave. 

Consider the case of single-mode spontaneous emission. In this case, the fluorescence cross section of 

the particle takes the form: 
4 2

(1) (1)0 0
0 0 3 2

21 0

( ) ( )
8 ( )

a
s n s n a L aeff

n

C G V B x
c

ε ω ω ⎡ ⎤σ ω = ω ≅ η Π⎣ ⎦π Γ Γ + Γ
.   (3.30) 

If the dominant mode is a high-Q mode, that is 0nΓ << Γ , then the fluorescence cross section is 

inversely proportional to the squared natural line width of spontaneous emission 0Γ . Otherwise, for the low-Q 

mode ( 0nΓ >> Γ ), the main contributor to (1)
sσ  is the natural damping of the resonator. 

Compare Eq. (30) with the spontaneous fluorescence cross section of an extended medium (1)
s ∞σ . The 

ratio of the fluorescence cross section of the particle in the case of excitation of a single mode of the secondary 

field to that in a spherical region without pronounced resonator properties, containing the same number of active 

molecules and having the same volume as the particle, is the following: 

(1) (1) (1)
2

0

1
(1 )s s L eff

n

B∞ ⎡ ⎤σ σ = Π⎣ ⎦+ Γ Γ
.     (3.31) 

For numerical estimates, let us consider a water drop with the refractive index an  = 1.33. At the mean 

value of the overlapping integral (1)

eff
⎡ ⎤Π ≈⎣ ⎦ 20, we have the sought ratio of the fluorescence cross sections in 

the absence of input resonance ( LB ~ 2): (1) (1) ~s s ∞σ σ 0.1 for low-Q modes ( 0nΓ >> Γ ) and (1) (1) ~s s ∞σ σ 40 for 

high-Q modes ( 0nΓ << Γ ). At the resonance excitation of spontaneous fluorescence by the incident wave 

(conditions of input resonance), when LB >> 1, these estimates should be increased by more than order of 

magnitude.  
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Thus, at excitation of spontaneous fluorescence in microparticles, the spectral cross section of the one-

photon process for some modes can exceed the spontaneous emission cross section of the same volume of an 

extended medium, and this excess is proportional to the product of the factors accounting for the focusing 

properties of the particle and its characteristics as a dielectric microresonator. The spherical shape stipulates 

appearance of local maxima in the spatial intensity distribution of the pump field and the field of the secondary 

wave inside the microparticle and, consequently, the more efficient excitation of active molecules in the zones 

of local maxima as compared to the extended medium. It can be stated that just this is the main reason for 

asymmetry in the angular distribution of the fluorescence field from particles, which was repeatedly observed in 

the experiments (see, for instance, [6]), while the spontaneous fluorescence of a bulky substance is characterized 

by the isotropic angular distribution. 

 
 
3.1.3. About linear nonstationary light scattering in gases 

Our researches have shown that the linear scattering of ultra-short radiation on gaseous media 

has no appreciable differences from its stationary analogue, therefore for estimations of integral 

scattering characteristics under the condition of non-stationary process it is possible to use results of 

the stationary theory. 

 
 
3.2. Nonlinear inelastic nonstationary light scattering by aerosols particles 

3.2.1. Nonlinear-optics effects of high-power femtosecond radiation in microparticles 
A characteristic feature of the interaction of high-power femtosecond radiation with aerosol particles is 

the absence of thermal nonlinear effects because of the short pulse duration. The main effects in this case are 

multiphoton absorption, multiphoton ionization and other effects associated with optical anharmonism. 

In what follows, we concentrate our attention at representation of the results of nonlinear femtosecond 

optics for liquid-droplet aerosols. We start from the model of macroscopic nonlinear optics, in which the vector 

of macroscopic nonlinear polarization of the medium is introduced as  
N

N N= < >∑P µ ,   ( )N pS ρ< >=µ µ ,   (3.32) 

where N< >µ  is the mean dipole moment of the molecule as found from solution of the classical or quantum 

problem under the conditions of nonlinear interaction. 

In liquid transparent media, nonlinear effects are connected, in the first turn, with the so-called cubic 

nonlinearity of the medium  
(3)ˆN χ=P EEE .      (3.33) 

The imaginary part of the tensor of cubic susceptibility describes generation of the Stokes radiation, 

third harmonic generation, and two-photon luminescence. 
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3.2.2. Nonlinear interactions of optical fields of femtosecond pulse in a microparticle 

connected with anharmonizm 

Let us first write the most general equation characterizing nonlinear optical interactions in the 

particulate matter. The effects of nonlinear optics of ultrashort pulses are connected with the presence of the 

third-order nonlinear polarization of the medium [7]. The corresponding real vector of nonlinear polarization Pnl 

can be presented in the following form [8]: 

    ( )3
0 ˆN m eN Q χ= +P E EEE .     (3.34) 

In Eq. (34) the first term is responsible for the contribution from Raman scattering to nonlinear 

polarization of the medium, and the second term describes the contribution due to the electronic polarizability 

leading to the third harmonic generation. The designations are the following: E is the real vector of the electric 

field in the medium; N0 is the number of molecules in a unit volume; Qm is the coordinate of nuclei 

displacement in a molecule; ( )3ˆeχ  is the tensor of third-order electronic susceptibility of the matter. For a fluid, 

the role of the second-order susceptibility leading, in particular, to the second harmonic generation is very small. 

Note that the electronic susceptibility follows the field almost immediately. At the same time, the SRS effect 

occurs in a certain delay. 

Nonlinear polarization is the source of nonlinear optical waves in the particle. The equation for the 

electric field has the form  

 ( ) ( ) ( ) ( )
2 2

2 2 2 2 2

, ,4 4, ,a
N

t t
rotrot t t

c t c t c t
ε πσ π∂ ∂ ∂

+ + = −
∂ ∂ ∂

E r E r
E r P r ,   (3.35) 

where εa and σ are the dielectric constant and conductivity of the particulate matter, respectively. Then for the 

pumping wave (subscript “L”) and Stokes wave (subscript “S”) we can write down two equations: 

( ) ( ) ( ) ( )2 2

2 2 2 2 2

; ; ;4 4;
S

S S Na
S

t t t
rotrot t

c t c t c t
ε πσ π∂ ∂ ∂

+ + = −
∂ ∂ ∂

E r E r P r
E r  

 

( ) ( ) ( ) ( )2 2

2 2 2 2 2

; ; ;4 4;
L

L L Na
L

t t t
rotrot t

c t c t c t
ε πσ π∂ ∂ ∂

+ + = −
∂ ∂ ∂

E r E r P r
E r , 

where electric fields inside a particle are represented by a series in terms of cavity eigenfunctions TE
npE  and 

TH
npE : 

( ) ( ) ( ) ( ) ( ), ,
,

1 1

; L S TE L S TH
L S np np np np

n p

t A t iB t
∞ ∞

= =

⎡ ⎤= −⎣ ⎦∑∑E r E r E r  

We have obtained the equations for the time coefficients of the fields of different types of nonlinearity: 

( ) ( ) ( ) ( )
2

, , , 2 , ,
2 2L S L S L S L S L S

np np np np np np
d dA t A t A t J t
dt dt

ω+ Γ + = , 

where 
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( ) ( )
2

2

4 L
L i N
np np np

a V

J t F t d
t

π
ε

∗ ∂
= +

∂∫
PE r  

 

( )
2

2

4 S
S N
np np

a V

J t d
t

π
ε

∗ ∂
= −

∂∫
PE r  

Analysis of the equations revealed the thresholds of the processes and the characteristic dependences of 

the energy parameters (intensity, energy) on the power parameters of the femtosecond pulse and medium 

characteristics. 

The medium is assumed homogeneous inside the particle. The coordinate Qm is determined by the 

equation of forced vibrations: 

( )
2

2
2

2

2m m
R m

Q Q Q F t
t T t

∂ ∂
+ + Ω =

∂ ∂
,     (3.36) 

where ( ) 21
2 m

m

F t n
m Q

α∂
=

∂
E  is the force; α is the medium polarizability; m is the molecular mass; T2 is the 

time of cross relaxation; ΩR is the frequency of molecular vibrations; ( )1 2 0mn N N N= − , N1,2 are populations 

of the levels involved in the Raman active transition 1 → 2. The equation for nm has the following form: 

   
2

1

1 1
2

m m m

R m

n n Q
t T t

α∂ − ∂∂
+ =

∂ Ω ∂Ω ∂
E ,    

 (3.37) 

where Т1 is the time of longitudinal relaxation;  is the Planck’s constant. 

The solution for the coordinate Qm is well known: 

  ( ) ( ) ( ) ( )2 2
0

1 exp exp sin
2

t

m R
m

Q t T F t t T t t dt
m Q

α∂ ′ ′ ′= − − Ω −
∂ ∫ .  (3.38) 

A peculiarity of the behavior of the coordinate Qm in the microparticle is that, due to the excitation of 

WG modes in it, the characteristic properties of ultrashort pulses (tp << T2 or tp < ΩR,–1) in no way do manifest 

themselves. This is connected with the fact that time behavior of the function F for the WG modes is determined 

by the modes’ lifetimes rather than by the duration of a femtosecond laser pulse, as for the case of propagation 

of a traveling wave. 

Our consideration is based on the physical model, in which whispering-gallery modes are formed as the 

pulse passes through the particle (for the time τr ∼ 2πа0/с), whereas no significant processes of nonlinear 

scattering occur in the particulate matter. If the modes formed by the femtosecond pulse include such that their 

frequencies ω meet the condition of Raman resonance ωS ≈ ωL – ΩR, then the process of amplification of one 

mode with the frequency ωS by the other mode with the frequency ωL becomes possible. 

For the time moment t > tp the intensity in the WG mode, in the absence of a nonlinearity, can be 

presented as 
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   ( ) ( ) ( ){ }, , , ,, , expWG L S WG L S p p L S L SI t I t t t Qω ω ω= − − .  (3.39) 

Here QL,S are the Q-factors for the corresponding modes. Since the lifetime of the modes is τr ∼ 10–9 –

 10–7 s, the process of nonlinear interaction among the modes for such times can be considered in the 

quasistationary approximation. In this case, nonlinear polarization connected with the SRS process is formed in 

the medium. The vector of nonlinear polarization can be written as  

    ( ) ( ) ( ) ( ) ( )3 3 . .R S R S L L S c cω χ ω ∗= +P E E E     (3.40) 

In Eq. (40), ,L SE  are complex electric fields of the modes L and S; ( ) ( )3
R Sχ ω  is nonlinear susceptibility 

of the medium for the SRS effect. Under conditions of SRS resonance  

( )
2

3 0 2

16R
R m

N Ti
m Q

αχ
⎛ ⎞∂

= − ⎜ ⎟Ω ∂⎝ ⎠
.     (3.41) 

The equations describing mode interaction at SRS in a microparticle were derived in Ref. 9 in the 

quasistationary approximation. We use here these results, as well as the approximation of the given field of the 

pump mode. For the intensity of the Stokes mode we have  

( ) ( ) ( ) ( )
, , exp ,

p

t
p S

WG S p WG S p WG L
St

t t
I t I t gI t dt

Q
ω

ω ω ω
⎧ ⎫−⎪ ⎪′ ′= − ≈⎨ ⎬
⎪ ⎪⎩ ⎭
∫  

( ) ( ) ( ){ } ( ),
, exp 1 expWG S p L p S

WG S p p L L
L S

gI t Q t t
I t t t Q

Q
ω ω

ω ω
ω

⎧ ⎫−⎪ ⎪⎡ ⎤≈ × − − − −⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭
,  (3.42) 

where s c

a

cg Bg
n

= , 
2

0 2
2

2 S
s

a R m

N Tg
c m Q
π ω α

ε
⎛ ⎞∂

= ⎜ ⎟Ω ∂⎝ ⎠
 is the coefficient of the Stokes wave intensification; Bc is the 

coefficient of spatial overlapping of the fields of the modes L and S [10]. 

Equation (42) shows that SRS leads to a decrease in the damping factor of the Stokes mode. The 

maximum intensification increment that is possible in the mode of the Stokes frequency can be expressed as 

follows: 

   
( )

max

,s c WG L p S

a S

cg B I t Q
G

n
ω

ω
= .      (3.43) 

Let us assume that 0
L

WG
p

I I ω
ω

∆
≈

∆
, where I0 is the maximum intensity in the femtosecond pulse. The 

width of the WG modes is ∆ωL = ωL/QL. Thus, we obtain  

   0
max 4

s c S L p

a S L

cg B I Q
G

n Q
ω τ

ω π
= .     (3.44) 

The effective coefficient of SRS amplification in the microcavity is introduced as: ge = gs Bc , where gs is 

steady-state Raman gain; sω  is Stokes frequency; Qs is MDR’s quality factor;  
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B̄L = 
 ĪL

I0
 = 

1
Va E

2
0
 ⌡⌠
Va

 EL(r) E*L (r) dr,     (3.45) 

and Bc is the normalized coefficient of spatial overlap of interacting fields inside the particle. The coefficient Bc 

weakly depends on time both at the initial stage and at the stage of steady state SRS. At the initial stage of the 

process, it can be calculated separately in the linear approximation, that is, within the Mie theory: 

( ) ( ) ( )( )
1

* * * *

a a a

c a L L S S L L S S
V V V

B V d d d
−

⎡ ⎤
= ⋅ × ⋅ × ⋅ ⋅⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫ ∫E E r E E r E E E E r .  (3.46) 

The coefficient ge reflects the difference in the rate of the Stokes wave generation in the particle as 

compared with the extended medium. This leads to a significant decrease of the process thresholds and in some 

cases allows the continuous-wave radiation to be used to pump the microcavity. 
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Fig. 3.8. The dependence of ge/gs ratio on the Q-factor for the resonance modes Qs of the 
Stokes field at excitation of the SRS due to single (1) and double (2) fields resonance. Solid 
line is a guide for eye. 

 
Figure 8 shows the dependence of the ge/gs ratio on the effective Q-factor of the Stokes field eigenmodes 

Qs. The calculation was performed for water droplets of different radius (na = 1.33, λL = 0.53 µm, λs = 0.65 µm) 

in two situations of nonlinear interaction between waves: resonance of only the Stokes field (“single” 

resonance) and resonance of both waves (“double” resonance). It follows from this figure that the ratio e sg g  

is close to unity at nonresonance SRS excitation. A significant growth of the efficiency of nonlinear interaction 

is observed only in the case of double resonance between the fields. 

Let us emphasize once more that the considered excitation threshold of the Raman wave corresponds, in 

fact, to fulfillment of the condition for appearance of positive feedback in the particle-cavity for the Stokes 

wave, when its total loss due to absorption and emission through the particle surface becomes equal to the gain 

due to nonlinear interaction with the pump field. The intensity of stimulated scattering under such conditions is 

low and corresponds to the intensity of spontaneous Raman scattering.  

Qs 

ge / gs 
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The value of Gmax depends significantly on the degree of spatial overlapping of the modes – the 

coefficient Вс. To estimate it reliably, additional investigations are needed. Assuming that Вс = 1, for 

ωL = 3542 THz, ωS = 2898 THz, gs = 10–3 cm/MW, QS = QL, and τр = 10 fs, we have that Gmax = 1 at 

I0 ≈ 5⋅1013 W/cm2. Such intensity levels are typical of the experiments on scattering of high-power femtosecond 

pulses on water particles [10]. 

Let us consider how the field of the third harmonic (TH) is formed in a spherical particle under the 

effect of a femtosecond pulse. As a pulse of this duration passes through a particle, nonlinear polarization of the 

medium occurs at the triple frequency of every harmonic in the radiation spectrum. This polarization is the 

source of TH waves. If some Fourier component of the pulse spectrum is in resonance with a WG mode, then 

efficient nonlinear interaction between this component and the field of its TH is possible, if the TH is also the 

WG mode. Under such an interaction, a part of energy of the initial pulse is converted into the TH during the 

time the field exists in the particle. Thus, in contrast to the SRS, when the pulse itself contains components with 

the frequencies, whose difference is equal to the frequency of molecular vibrations, for the THG process the 

mode at the same frequency must be formed. To estimate the process of formation of the WG mode, we can use 

the approximation of the traveling wave [11]. For the intensity of TH that is generated as the pulse passes 

through the particle, we can write 

( ) 236 4 3 2 3 2
3 0576 a L egI n c I Lπ λ χ= .     (3.47) 

Here L is the path length along the particle surface 02L πα≈ ; ( )3
egχ  is the component of the tensor ( )3ˆeχ  

responsible for the TH generation. The estimates by Eq. (47) indicate that for particles with the radii а0 ∼ 10 µm 

the experimentally measurable signal I3 can be achieved. 

Consider the relation between the contributions due to the SRS and the THG to the distortion of the 

pulse spectrum. If the modes maintaining the SRS and TH overlap, then the competition is possible between 

these effects. To determine what effect prevails in the nonlinear interaction, we use the quasistationary 

approximation. In this approximation, the parameter characterizing the relation between the components of 

nonlinear susceptibility, which determine the contributions to the nonlinear polarization coming from the effects 

of forced molecular vibrations and nonlinear electronic polarizability, is as follows [8]: 

    
( )

( )
( )

3 2
30 2

3

Im

48
R

eg
m Reg

N T
m Q

χ αδ χ
χ

⎛ ⎞∂= = ⎜ ⎟∂ Ω⎝ ⎠
. 

For water δ is equal to 0.65 [8]. This value points to the fact that in water particles the contribution 

coming from electronic polarizability to the process of nonlinear interaction is somewhat larger than that from 

the SRS. 

From the above physical consideration it follows that generation of high-Q components of the light field 

caused by nonlinear electronic polarizability as well as of the Stokes frequencies initiated by the stimulated 

Raman scattering is possible for the femtosecond pulse in a microparticle. A more accurate relation between the 

contributions from these two processes to the general pattern can be determined from a rigorous solution of the 
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problem with the allowance made for the spatial and frequency interaction of the exciting and scattered fields; 

this solution will be considered in the future. 

It is obvious that exposing the particle to a group of femtosecond pulses with the period Т0 < τr, where τr is 

the characteristic lifetime of the mode taking part in a nonlinear interaction, we can obtain quasistationary 

excitation of stimulated emission. This distinguishes the pulsed interactions of a femtosecond pulse with a particle 

and the interaction with an extended medium, since in the latter case it is important for the pulse repetition 

frequency to be comparable with the frequency of molecular vibrations of the medium. 

 
 
3.2.3. Two-photon fluorescence of water droplets under the exposure to intense laser 

radiation: experiment 
The transition probability at two-photon absorption is known to be related to the radiation intensity as  

2
22 IW ⋅σ= ,      (3.48) 

where 2σ  is the cross section of two-photon absorption. 

Quantum-mechanics description of the probability of two-photon transition and the absorption cross 

section in the system of two real levels a and b and one virtual intermediate level n is obtained in the tensor 

form. For luminescent molecules, the emission cross section is measured experimentally. 

If the pulse duration is longer than the lifetime of the first excited singlet state, then the fluorescence 

intensity is  

2
02 INI f ησ= ,     (3.49) 

where η  is the quantum yield, N0 is the concentration of molecules. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.9. Two-photon luminescence initiated by femtosecond pulse in dye droplets. Laser 
wavelength λ = 820 nm, pulse duration τ = 50 fs, pulse energy Ep = 3 – 5 nJ. 
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Two-photon dye luminescence in a microparticle under the exposure to a group of femtosecond pulses 

is examined experimentally by us. Experiments were conducted to study two-photon induced luminescence 

(TPIL) in millimeter dibutylphtalate drops with Rhodamine 6G (R6G) pumped by femtosecond laser radiation 

with the wavelength of 0.82 µm, pulse duration of 50 fs and pulse energy of 3-5 nJ. The laser radiation was 

focused in the drop near-surface area. The spectra of the pump radiation and the drop glow were recorded with 

the resolution of 0.3 nm. The obtained emission spectrum of the R6G solution in a drop has a peak nearby 

0.57 µm and coincides with the R6G luminescence spectrum. This allows us to interpret the observed glow as 

two-photon induced luminescence (Fig.9). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.10. Two-photon fluorescence of drop with R6G. 
 

Figure 10 shows dependence of fluorescence signal energy on the femtosecond pulse energy. Clearly, it 

has quadratic character. 

 
 
3.2.4. Second harmonic generation (SHG), third harmonic generation (THG), white light 

generation: overview of experimental data 
In this part we present a results of detailed study of nonlinear effects in water microdroplets excited by 

ultrashort pulses, produced in [12] The intensities and thresholds of second-harmonic generation (SHG), third-

harmonic generation (THG), white-light generation, and Raman coupled processes are compared and discussed. 

The experimental setup is presented in Fig. 11. Distilled water droplets are produced by a piezoelectric-

driven aerosol generator (Microdrop MD 140). The droplet radius can be tuned from 8 to 32 µm by adjustment 

of the driving voltage and the pulse duration. 

The femtosecond laser system consists of a Spectra-Physics Ti:sapphire laser source that produces 80-fs 

pulses and a Quantronix regenerative amplifier. This system provides peak powers of as much as 5.3 GW at a 1-
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kHz repetition rate. The wavelength for these experiments is 810 – 820 nm, with a typical bandwidth of 10 nm. 

The polarization of the laser can be turned by a half-wave plate. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3.11. Experimental setup for nonlinear scattering measurements of microdroplets: z, 
polarization direction of the laser; ф, angle between the scattering plane and the yz plane; θ, 
scattering (polar) angle toward the xz plane. PMT, photomultiplier tube. 

 
Spectrum of nonlinear scattering from microdroplets. Figure 12 shows the wavelength dependence of 

the intensity emitted by a water droplet with a radius of a = 25 µm (size parameter ka ≈ 194, where k = 2π/λ). 

This measurement is made at θ = 32° and ф = 90°, with a captured solid angle of 1.8 x 10-2 sr. The laser power 

is 5 × 1013 W cm-2, and the pump wavelength is centered at 820 nm. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.12. Wavelength dependence of the intensity emitted at 32° by a water droplet with a 
radius of 25 µm (ka ~ 194). The incident laser power is 1.7 × 1013 W·cm-2, and the captured 
solid angle is 1.8 × 10-2 sr. Inset, third-harmonic peak at lower laser fluency (1013 W·cm-2). 

 
The main feature of the spectrum is a prominent THG peak at 273 nm. The inset shows the shape of this 

peak at a lower laser power (1013 W·cm-2). As expected, it corresponds to the third power of the Gaussian 

energy distribution of the fundamental profile. In particular, its FWHM of 3 nm fits the 10-nm broad excitation 
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well. The power dependence of the THG light, measured for pump powers ranging from 5 × 1011 to 5 × 1013 

W·cm-2, allowed us to estimate the nonlinear efficiency process σ(3), defined as 

(3) 3THG
p

dP I
d

σ=
Ω

, 

where dPTHG/dΩ is the emitted THG power per solid angle unit and Ip  is the incident laser power intensity. At θ 

= 32° (close to the maximum; see below) σ(3) is estimated to be 5 × 10-36 W-2 cm6 sr-1, whereas in 

backscattering (θ= 180°) it is found to be 1 order of magnitude lower. Our experimental threshold of 

observation of the process is 5 × 1011 W cm
-2. 

The SHG process is observable on the spectrum at 410 nm, but it is of a magnitude 1000 times weaker 

than that for THG. This result accounts for the good spherical shape of the droplets, because SHG is forbidden 

by symmetry, as in every even-order nonlinear process. 

Besides SHG and THG, a very broad white-light background (~ 200 nm FWHM) is clearly observed, 

generated by self-phase modulation. The spectral width ∆ν generated in these conditions can be estimated by  

2
1 dIn

dt
ν

λ
∆ = ,      (3.50) 

where n2 is the nonlinear refractive index of water [4.4 × 10-16 cm2 W-17] and dl/dt is the temporal variation 

of intensity, yielding a continuum of 370-nm width per millimeter of water traversed, which is consistent with a 

light path in a cavity mode of a quality factor of only 7·103. Some whispering-gallery modes in liquid droplets 

exhibit Q factors as high as 108. Although this broadband emission can be extremely attractive for spectroscopic 

analysis, its amplitude remains relatively low, in the best case (~ 340 nm) 3 orders of magnitude lower than for 

THG. 

 
 
 
 
 
 
 
 
 
 

Fig. 3.13. Angular distribution of the THG from water microdroplets with radius a ≈10.5 µm  
(ka ≈ 81) in both azimuthal planes (φ = 0 and φ = 90°) with the same scale Wavelength 
dependence of the intensity emitted at 32° by a water droplet with a radius of 25 µm (ka ~ 194). 
The incident laser power is 1.7 × 1013 W·cm-2, and the captured solid angle is 1.8 × 10-2 sr. 
Inset, third-harmonic peak at lower laser fluency (1013 W·cm-2). 
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3.3. Thresholds for laser induced optical breakdown (LIB) of aerosol medium in 

femtosecond time scale 

The interaction of an intense laser radiation of nanosecond and picosecond duration with aerosol is 

accompanied by the effect of optical breakdown near aerosol particles. It has been found that in the case of 

absorbing particles the breakdown initially occurs in the dense vapor produced by evaporation of the particle 

exposed to the radiation. For weakly absorbing particles, the plasma of the optical breakdown is first produced 

inside the particle, and then the optical discharge propagates outside into the gas medium. The appearance of 

optical breakdown was observed as the glowing plasma filament in the substance and the intense acoustic signal 

from the region of the light beam. 

In atmospheric optics the thresholds and dynamics of the development of the optical breakdown in 

particles are also important for evaluation of the possibility of mechanically destructing the microparticle due to 

dissipation of the energy stored in plasma and, in addition, in the problems of laser energy transport through the 

atmosphere by a series of femtosecond pulses. 

The objective of this Section is theoretical calculation of the optical breakdown thresholds for 

transparent microparticles exposed to single laser pulses with the nano-, pico-, and femtosecond duration. 

The formation of plasma in the medium upon propagation of an intense laser radiation is connected with 

the generation of free electrons under the effect of light field. The main physical mechanisms of photoionization 

of the condensed and gaseous media are the cascade (avalanche) and multiphoton ionization (MPI). The 

particular role of each of these ionization mechanisms in plasma formation depends on the intensity and 

duration of the laser pulses. 

The evolution of the electron concentration in plasma is based on the system of rate equations for the 

concentrations of negatively ne and positively np charged and neutral particles, which account for all the 

physical mechanisms regulating the charge balance in plasma. Under conditions of quasineutral (np ≈ ne) and 

quasiequilibrium plasma (thermodynamic equilibrium), only one rate equation for ne turns out sufficient in the 

most cases: 

2me
mpa cas e rec e att e

n I I n n n
t

∂
= η + η ⋅ − η − η

∂
.    (3.51) 

Here ηmpa, ηcas, ηrec, ηatt are the parameters characterizing the rates of MPI, cascade ionization, recombination, 

and attachment of electrons, respectively; I is the intensity of laser radiation; m is the integer part of the sum 

(Ei/ ω0 + 1); Ei is the energy of atom ionization; ω0 is the central frequency in the laser pulse spectrum;  is the 

Planck constant. The first two terms in the right-hand side of Eq. (51) describe the growth of the concentration 

of free electrons, while the others characterize its decrease. 

The rate of cascade ionization in the approximation of instantaneous energy exchange between the 

electron and the atom (Drude model) is expressed as follows: 

( )

2

2
00

1
1

coll
cas

a e icoll
n c m E

τ
η = ⋅

εω τ +

e ,     (3.52) 

where me and e are the electron mass and charge; ε0 is the electric constant; na is the refractive index of the 

medium; τcoll is the electron mean free time, the time between collisions. 
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According to MPI theory developed by L.V. Keldysh [13], an atom can be also ionized as a result of 

successive absorption of several radiation quanta. In this case, the bound electron receives the energy sufficient 

to leave the atom and form the gas of free electrons. The probability of this process is proportional to the 

instantaneous intensity of laser radiation to the m-th power. Unlike the cascade ionization, MPI requires rather 

high radiation intensity, but evolves much faster. 

For calculation of the MPI rate, the equations from Ref. 4 can be used: 
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where e e /2m m′ ≈  is the reduced exciton mass; N0 is the concentration of neutral gas molecules; 

( )02 /im Eξ = − ω ; ( )Φ ξ  is the Dawson's integral. Equation (53a) is used for condensed media, and 

Eq. (53b) is for the gaseous ones. 

For the rate of the electron–ion recombination there are the following experimental estimates: 

ηrec ≈ 1.1 ⋅ 10–12 m3/s for the atmospheric air  and ηrec ≈ 2.0 ⋅ 10–15 m3/s for water. The process of capture of free 

electrons by neutral molecules and formation of negative ions is described by the corresponding rate of 

attachment: 
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m
M

τ ω
η =

⎡ ⎤ω τ +⎣ ⎦
,     (3.54) 

where M is the mass of molecule. 

The evolution of the concentration ne in pure water is shown in Fig. 14 for following parameters: laser 

pulse: λ0 = 800 nm; I0 = 1011 W/cm2; tp = 10–13 s; medium: water, ne0 = 1 m–3; m = 5; Ei = 6.5 eV; ηmpa= 2.51 ⋅ 10–

48 m7 ⋅ s4/J5; casη = 1.93 ⋅ 10–4 m2/J. 
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Fig. 3.14. Evolution of the concentration of free electrons in water under the exposure to a 
rectangular-shaped radiation pulse with the account of MPI and cascade ionization (solid curve) 
and at ηcas = 0 (dashed curve). The inserted fragment demonstrates the initial stage of the 
development of the electron avalanche.  
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It can be seen that after the quick growth the concentration of plasma electrons achieves the level of 

saturation, which, as will be shown below, depends on the intensity of the incident light wave. At t > tp (the time 

t = tp corresponds to the break of abscissa on the plot), ne begins to decrease first as 1/t due to the mechanism of 

electron–ion recombination and then exponentially for the time 1
attt −η∼  due to the attachment of electrons to 

neutral atoms. 

To determine the fractions of MPI and cascade ionization in evolution of the plasma, ne(t) was 

calculated by Eq. (51) at ηcas = 0. The results of this calculation are shown by the dashed curve in Fig. 14. The 

level of ne max turned out to be much lower in this case. This indicates that in the condensed medium (water) the 

role of MPI reduces to provision of seed electrons for the following development of the avalanche just due to 

cascade ionization. 

At the same time, MPI, as known, plays a certain role in plasma formation in the gas medium at high 

intensity of the laser radiation. This is also confirmed by our calculations for the atmospheric air (78% N2 and 

22% O2) at the following parameters: 

 Ei(N2) = 15.6 eV (m = 11),   Ei(O2)= 12.5 eV (m = 9); 

ηmpa(N2)= 5.75 ⋅ 10–165 m19 ⋅ s10/J11,   ηmpa (O2) = 8.21 ⋅ 10–127 m15 ⋅ s8/J9;  
 ηcas = 8.32⋅10–7 m2/J,   ηrec = 1.1⋅10–13 m3/s, ηatt =2.5⋅107 s–1.  

In this case, to obtain the concentration of free electrons ne max ∼ 1024 m–3, the radiation intensity has 

been increased up to I0 = 1014 W/cm2. 
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Fig. 3.15. Distribution of the factor B along the principal diameter of the water droplet (radius 
a0 = 50 µm; na = 1.33) exposed to the plane monochromatic wave with λ0 = 800 nm. Circles 
mark the intensity maxima of the optical field in the illuminated (1) and shadow (2) 
hemispheres and the region of geometric focus (3). The radiation is incident from the right to 
the left. 

 
Consider the results of numerical simulation of the optical breakdown in the vicinity of water droplets 

suspended in air. The electron concentration in plasma was calculated by Eq. (51) with the account of Eqs. (52)–

(54) based on the 4th-order Runge–Kutta numerical scheme. First, the model problem on the nonstationary 
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scattering of a plane light wave at a spherical particle was solved by the method described in Ref. 1. This 

yielded the dependence of the relative intensity of the optical field (inhomogeneity factor B(r; t) = I(r; t)/I0)) at 

some spatial points corresponding to the radiation intensity maxima in the illuminated (point 1 in Fig. 15) and 

the shadow (point 2) hemispheres of the droplet and in the region of the geometrical focus beyond the particle 

near its rear surface (point 3). Then the function B(r; t) was used in solution of Eq. (51). 

This choice of the spatial points for the calculation of ne(t) was caused by the highest probability of 

formation of the plasma of the primary optical breakdown just at the places of intensity maxima of the optical 

field. The time dependences of the relative intensity at the points 1–3 upon scattering of the 50-fs pulse 

(λ0 = 800 nm) with the Gaussian time profile are shown in Fig. 16. The zero time here corresponds to the time, 

when the leading edge of the pulse reaches the illuminated hemisphere of the droplet. 
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Fig. 3.16. Time dependence of the relative intensity of the optical field at the points of the front 
(1), rear (2), and external (3) maxima at the incidence of the radiation pulse tp = 50 fs, 
t0 = 100 fs on a water droplet (a0 = 50 µm; na = 1.33).  

 
It follows from Fig. 16 that at the nonstationary scattering of radiation in the particle, the dependence 

B(t) at the chosen points almost exactly copies the profile of the initial radiation pulse, is shifted in time due to 

the pulse propagation through the particle. First, the maximum of the internal optical field is formed in the 

shadow hemisphere of the particle (point 2); then, as the light wave is reflected from the rear surface of the 

droplet, the intensity maximum is formed in the illuminated hemisphere (point 1). Finally, the external intensity 

maximum is formed (point 3) near the rear surface of the particle. The maximum intensity of the optical field 

achievable for the exposure time (Bm) in the particle of the given size turned out practically identical at the 

points of the front and rear maxima: Bm = 239.8 (point 1) and Bm = 272.5 (point 2). At the same time, Bm at the 

point of the external field focus is almost sevenfold as high as these values: Bm = 1930.5 (point 3). 

The evolution of the concentration of the plasma electrons at the chosen points is shown in Fig. 17. The 

concentration values are normalized to th
en  = 1026 m–3, which are close to the experimentally measured threshold, 

whose excess initiates the optical breakdown in the medium [14]. 
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Fig. 3.17. Time dependence of the relative electron concentration in plasma ne/n
th
e  at the 

points of the front (1), rear (2), and external (3) maxima at incidence of the pulse with 
λ 0 = 800 nm on the water droplet (a0 = 50 µm; na = 1.33):  tp = 50 fs, t0 = 100 fs, 
I0 = 1.18 ⋅ 1011 W/cm2 (a); tp = 1 ps, t0 = 2 ps, I0 = 1.1 ⋅ 109 W/cm2 (b); tp = 1 ns, t0 = 2 ns, 
I0 = 7.9 ⋅ 108 W/cm2 (c). Curves 1 and 2 coincide. 

 
The intensity of the incident radiation corresponding to this threshold for the droplet of the radius 

a0 = 50 µm was th
0I = 1.18 ⋅ 1011 W/cm2, which is two orders of magnitude higher than the threshold intensity of 

the breakdown of water droplets in air for nanosecond pulses of the second harmonic of a Nd : YAG laser 

(λ0 = 532 nm) th
0I = 2.5 ⋅ 109 W/cm2 and, at the same time, two orders of magnitude lower than the breakdown 

threshold for clean air (without aerosol) th
0I = 4–6⋅1013 W/cm2 (λ0 = 800 nm). At the same time, the radiation 

energy density needed for initiation of the optical breakdown in the particle exposed to the pulse with tp = 50 fs 

is only wth ∼ 2 mJ/cm2, while the same parameter in water for the picosecond pulse is wth ∼ 400–650 mJ/cm2. 

As can be seen from Fig. 17, the threshold intensity of free electrons is achieved at the chosen 

irradiation intensity only at the rear focus. In the illuminated hemisphere, the values of ne are also close to, but 

still lower than th
en  In this case, the maximum electron concentration ne is only ∼ 0.05 th

en in the zone of the 

geometric focus of the incident radiation ( 0r a = –1.77), in spite of the significantly higher intensity of the 

optical field and, consequently, the probability of breakdown here is lower. 
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For a comparison, Fig. 17 shows the dependence ne(t) at the incidence of the picosecond and 

nanosecond pulses onto the water droplet. The intensity of the incident radiation in this case was much lower: 

I0 = 1.1 ⋅ 109  and 7.9 ⋅ 108 W/cm2, respectively. It should be noted that here the concentration of free electrons 

in the internal zones of the droplet by the time of optical breakdown is already more than 12 orders of 

magnitude higher than outside the particle due to, first of all, the higher rate of cascade ionization of water as 

compared to that of atmospheric gases. 

Note that this dependence of the breakdown threshold on the laser pulse duration was discussed earlier 

in the theoretical paper [15] for a bulk water medium based on the numerical calculation by Eq. (51). Here we 

would like only to emphasize that though the presence of a microparticle decreases the threshold of the optical 

breakdown both inside and outside the particle, for the femtosecond radiation this effect is less pronounced than 

for the nano- and picosecond pulses. 
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Conclusions 
 

The conclusions of our study are the following: 

1. We have developed and justified a numerical approach to the study of high-power femtosecond laser 

pulse filamentation in the turbulent atmosphere. The nonlinear-optical model of the pulse propagation 

includes diffraction, material dispersion in air, instantaneous and delayed Kerr nonlinearity, generation 

of the laser-produced plasma, and energy losses due to multiphoton ionization of air components. 

Stochastic filamentation in the turbulent atmosphere is simulated by means of the Monte-Carlo on the 

basis of the phase screen model describing refractive index fluctuations in the atmosphere in both 

inertial and dissipative subranges. 

2. The supercontinuum conical emission, accompanying femtosecond laser pulse filamentation, arises 

from the high spatio-temporal gradients of the light field intensity and the corresponding nonlinear 

phase. The same portions of the pulse experience high frequency shift and strong spatial divergence. 

Both effects are due to the fast growth of free electrons in the laser-produced plasma. 

3. The simulated map of the supercontinuum sources shows that the short-wavelength components of the 

supercontinuum originate from the rings surrounding the high-intensity region of the pulse and from the 

back front of the pulse. 

4. The optimum conversion efficiency to the supercontinuum in air (up to 5% of the input pulse energy) is 

attained if the temporal focusing length defined by the initial pulse chirp is slightly larger than the 

nonlinear focusing length defined by both peak power of the pulse and the geometric focusing distance. 

5. The Monte-Carlo simulations have shown the increase in the number of filaments with propagation 

distance in atmospheric turbulence. Multiple filaments are initially formed in the central slice of the 

pulse with the highest peak power and move towards the pulse front with distance. 

6. The calculated probability density function allows one to predict the average number of filaments 

produced along the atmospheric path at a certain distance from the laser system output and the variance 

of this number of filaments. 

7. As the atmospheric turbulence strength (the structure constant) increases, the filaments are formed, on 

average, earlier in the propagation direction as compared to the case of weaker turbulence. With 

increasing inner scale of turbulence the distance to the filament formation increases. In total, the effect 

of the inner scale of turbulence on multiple filamentation is comparatively weak. Five time increase in 

the inner scale leads to, on average, 1 meter increase in the filament formation distance, that is ~2-3% of 

the typical distance of the first filament formation. 

8. Under conditions of nonstationary light field diffraction on a transparent particle, the internal optical 

field is usually excited in a resonance way, with the eigenfrequencies of one or several high-Q 

resonance modes of the particle falling into the central part of the original pulse spectrum. This causes a 

time delay of the light in the particle and a reduction of the absolute maximum in the time dependence 

of the internal field intensity as compared with a stationary regime. The greatest reduction of the peak 

occurs at exact resonance. In this case, the decrease in the peak intensity may reach several orders of 
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magnitude. 

9. The main difference of the repetitive scattering of pulses by a spherical microparticle from scattering by 

a single pulse consists in the possibility of some phasing of individual pulses in the train, when the 

whispering gallery modes falling within the spectral profile of the train are excited resonantly. In this 

case, the larger is the frequency mismatch between the natural mode and the central frequency of the 

incident radiation, the shorter should be the gap between the pulses. 

10. At the excitation of spontaneous fluorescence in microparticles, the spectral cross section of the one-

photon process for some modes can exceed the spontaneous emission cross section of the same volume 

of an extended medium, and this excess is proportional to the product of the factors accounting for the 

focusing properties of the particle and its characteristics as a dielectric microresonator. The spherical 

shape stipulates appearance of local maxima in the spatial intensity distribution of the pump field and 

the field of the secondary wave inside the microparticle and, consequently, the more efficient excitation 

of active molecules in the zones of local maxima as compared to the extended medium. It can be stated 

that just this is the main reason for asymmetry in the angular distribution of the fluorescence field from 

particles, which was repeatedly observed in the experiments, while the spontaneous fluorescence of a 

bulky substance is characterized by the isotropic angular distribution. 

The signal of two-photon excited fluorescense is experementally shown to be proportional to the square 

of femtosecond laser pulse energy. 

11. The linear scattering of ultra-short radiation on gaseous media has no appreciable differences from its 

stationary analogue, therefore for estimations of integral scattering characteristics under the condition of 

non-stationary process it is possible to use results of the stationary theory. 

12. Excitation of resonance modes of the optical field in weakly absorbing spherical particles by 

femtosecond-duration pulses of radiation has some peculiarities as compared with the case of long 

pulses (or continuous-wave radiation). These peculiarities include the decrease of the resonance 

intensities of the internal field, especially in the zones of filed maximum (near the illuminated and 

shadow surfaces of the particle) and the occurrence of multimode excitation of resonance modes. 

13. The efficiency of energy transfer from the incident light wave to the field of a resonance mode depends 

on the ratio between the spectral widths of the resonance mode being excited and of the laser pulse. The 

smaller is this ratio, as compared to the monochromatic wave, the less efficient is the excitation of 

resonances, and the intensity of the internal field in the zones of field maximum decreases. 

14. The nonlinear optical effects of the SRS and THG in microparticles under the action of a high-power 

femtosecond pulse can occur in two stages. At the first one (transient stage), whispering-gallery modes 

are formed. At the second (quasistationary) stage, quasistationary generation of stimulated radiation in 

the Stokes and higher frequency, corresponding to the third harmonic, spectral regions is possible 

independent of the pulse duration. 

15. The results presented indicate that the physical pattern of appearance of the optical breakdown of 

weakly absorbing microparticles is the same for both long and ultrashort pulses. The plasma is first 

formed at the rear focus inside the particle, and then, if the exposure to the radiation continues, the 
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optical breakdown is possible in the gas medium adjacent to the particle in the region of the geometric 

focus of the particle for the incident radiation. The main difference of the femtosecond mode of optical 

breakdown from the breakdown under the exposure to pico- and nanosecond laser pulses is in the higher 

(∼102 times) threshold intensities of the incident radiation, as well as in a more significant role of the 

external focal zone of the optical field diffracted at the particle in the process of formation of the 

primary plasma. 
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